
 PASS Education System
Complete Languages Course

 www.passpk.com

 Prepared By: PASS Education System (PASS Team)
 Chief Executive: Taimoor Hassan

Java Complete Course

By:

 PASS Education System

What is Java?

 History

The history of the Java programming language dates back to the early 1990s and involves the efforts of
James Gosling and his team at Sun Microsystems (later acquired by Oracle Corporation). Here's a
timeline of the key events and developments in the history of Java:

Origins (1991-1995): James Gosling, often referred to as the "Father of Java," started a project called
"Green" in 1991 at Sun Microsystems. The initial goal was to create a language for consumer electronic
devices like set-top boxes. The team, which included Mike Sheridan, Patrick Naughton, and others,
developed a language called Oak, influenced by C++ and other languages, which eventually evolved into
Java.

Introduction of Java (1995): On May 23, 1995, Sun Microsystems officially unveiled Java to the world.
The name "Java" was chosen because of James Gosling's love for coffee from Java, an Indonesian island.
The tagline "Write Once, Run Anywhere" (WORA) highlighted Java's ability to be platform-independent,
allowing developers to write code once and execute it on any system.

Java Applets and Web Browsers (mid-1990s):** One of the significant early use cases of Java was in the
form of Java applets. These were small programs embedded within web pages that could be executed
by Java-enabled web browsers. This was a novel concept at the time and contributed to Java's early
popularity.

Java 2 (J2SE, J2EE, J2ME) and the Java Community Process (JCP) (late 1990s): Java 2 was released in
December 1998 and introduced significant improvements over the original version, including new
libraries, enhanced security, and other features. The release also marked the distinction between three
editions: J2SE (Java 2 Standard Edition) for desktop applications, J2EE (Java 2 Enterprise Edition) for
enterprise applications, and J2ME (Java 2 Micro Edition) for mobile and embedded systems.
Additionally, the Java Community Process was established to allow various stakeholders to participate in
the evolution of Java's specifications through the creation and approval of Java Specification Requests
(JSRs).

 PASS Education System
Complete Languages Course

 www.passpk.com

 Prepared By: PASS Education System (PASS Team)
 Chief Executive: Taimoor Hassan

OpenJDK and Java's Open Sourcing (2006): In November 2006, Sun Microsystems open-sourced Java
under the GNU General Public License (GPL) version 2. This led to the creation of the OpenJDK project,
an open-source implementation of the Java Platform, Standard Edition (Java SE).

Oracle Acquires Sun Microsystems (2010): In January 2010, Oracle Corporation acquired Sun
Microsystems, becoming the new steward of Java.

Java 8 and Lambda Expressions (2014): Java 8, released in March 2014, introduced significant language
enhancements, most notably lambda expressions and functional programming constructs. This update
brought a more modern programming paradigm to Java.

Java 9, 10, 11, and Beyond: Subsequent versions of Java brought various improvements, including the
Java Platform Module System (JPMS) introduced in Java 9, which aimed to improve modularity in the
platform. Java 10 and 11 introduced further enhancements and optimizations.

Project Jigsaw and Java Module System: Starting with Java 9, Project Jigsaw introduced the Java Module
System, which allows developers to create modular applications and libraries, promoting better code
organization and maintainability.

Current State: As of my last update in September 2021, Java remained one of the most popular
programming languages globally. It continued to evolve with regular updates and improvements under
the leadership of Oracle, and the Java community remained active in contributing to the language's
development.

What is Java (FEATURES) ?

Java is a versatile and widely used programming language that offers a variety of features, making it
suitable for a wide range of applications. Here are some of the key features of the Java language:

Platform Independence (Write Once, Run Anywhere - WORA): Java is designed to be platform-
independent, thanks to its "Write Once, Run Anywhere" philosophy. Java programs are compiled into an
intermediate representation called byte code, which can be executed on any platform with a Java
Virtual Machine (JVM). This allows Java applications to run on various operating systems without
modification.

Object-Oriented Programming (OOP) Support: Java is a fully object-oriented language, supporting the
principles of encapsulation, inheritance, polymorphism, and abstraction. This approach promotes
modular, flexible, and maintainable code.

Automatic Memory Management (Garbage Collection): Java features automatic memory management
through garbage collection. The JVM automatically handles memory allocation and deallocation, freeing
developers from the burden of manual memory management.

 PASS Education System
Complete Languages Course

 www.passpk.com

 Prepared By: PASS Education System (PASS Team)
 Chief Executive: Taimoor Hassan

Multi-threading Support: Java provides built-in support for multi-threading, allowing developers to
create concurrent and multi-threaded applications easily. This is crucial for developing responsive and
efficient programs.

Rich Standard Library (Java API): Java comes with a vast and comprehensive standard library (Java API),
offering a wide range of classes and methods for various tasks, including input/output, networking, data
manipulation, and more.

Security: Java's design incorporates built-in security features to protect against various threats, such as
viruses, tampering, and unauthorized access to resources. The Java Security Manager enables fine-
grained access control for applets and applications.

Exception Handling: Java has a robust exception handling mechanism that allows developers to manage
runtime errors effectively. This helps in writing reliable and fault-tolerant applications.

Rich Ecosystem: Java has a large and active developer community, resulting in a vast ecosystem of
libraries, frameworks, and tools. This extensive ecosystem contributes to faster development, easy
integration, and code reuse.

Simplicity and Familiarity: Java's syntax is similar to that of C++, making it easier for developers with a
background in C/C++ to learn and work with Java. Moreover, Java's clean syntax promotes readable and
maintainable code.

Distributed Computing Support: Java includes libraries for network communication and remote method
invocation (RMI), making it well-suited for building distributed applications and services.

Robustness and Reliability: Java's strict typing, strong memory management, and exception handling
contribute to its robustness and reliability. It helps prevent common programming errors, enhancing the
overall stability of applications.

Dynamic Loading: Java allows dynamic class loading, enabling the loading and use of classes during
runtime. This feature is particularly useful for extending application functionality without recompiling
the entire codebase.

 PASS Education System
Complete Languages Course

 www.passpk.com

 Prepared By: PASS Education System (PASS Team)
 Chief Executive: Taimoor Hassan

These features have made Java a popular choice for a wide range of applications, including web
development, enterprise software, mobile app development (Android), scientific computing, and more.

Applications of Java?

Java is a versatile and widely used programming language with a broad range of applications. Some of

the key areas where Java finds extensive use include:

Web Development: Java is widely used for building dynamic and interactive web applications. Popular

web frameworks like Spring, JavaServer Faces (JSF), Struts, and Play Framework are based on Java.

Enterprise Applications: Java is a top choice for developing large-scale, enterprise-level applications. Its

robustness, scalability, and platform independence make it suitable for complex business systems,

customer relationship management (CRM) software, and enterprise resource planning (ERP) solutions.

Android App Development: Java is the primary programming language for Android app development.

Android Studio, the official Android development environment, supports Java as the main language for

creating mobile applications.

Big Data Processing: Java is widely used in big data processing and analysis due to its performance,

scalability, and compatibility with big data tools and frameworks like Apache Hadoop and Apache Spark.

Cloud-based Applications: Java is commonly used for developing cloud-based applications and services,

making use of platforms like Amazon Web Services (AWS), Microsoft Azure, and Google Cloud Platform.

Internet of Things (IoT): Java's platform independence and low resource requirements make it suitable

for IoT devices and applications, especially in constrained environments.

Scientific and Research Applications: Java is utilized in scientific computing and research due to its

extensive libraries, numerical processing capabilities, and cross-platform support.

Financial Services: Java is commonly employed in the financial sector for building trading platforms, risk

management systems, and other financial applications.

Gaming: Java is used for developing both desktop and mobile games, especially in the form of Java

applets or Android games.

Embedded Systems: Java's portability and memory management features make it suitable for

embedded systems and Internet of Things (IoT) devices.

Educational Tools and Platforms: Java is often used in educational software and learning management

systems due to its ease of use and robustness.

 PASS Education System
Complete Languages Course

 www.passpk.com

 Prepared By: PASS Education System (PASS Team)
 Chief Executive: Taimoor Hassan

Healthcare and Medical Applications: Java finds application in healthcare and medical systems,

including hospital management systems, patient record management, and medical imaging software.

Internet and Network Applications: Java is used to create networking tools, web servers, and other

internet-related applications.

Desktop Applications: While Java's focus has shifted more towards web and enterprise applications, it is

still used for creating cross-platform desktop applications.

The versatility, portability, and stability of Java have contributed to its widespread adoption across

various industries and domains. Its robustness and extensive ecosystem of libraries and frameworks

continue to attract developers and businesses alike.

Basics of Java? / Requirements for Java / How to Start Java?

To start Java programming, you'll need to set up your development environment and familiarize yourself

with the basics of the Java programming language. Here's a step-by-step guide to get you started:

1. Install Java Development Kit (JDK):

 - Visit the Oracle website or adopt OpenJDK to download the latest version of JDK.

 - Install JDK on your computer, following the installation instructions for your operating system.

2. Set up Environment Variables (optional but recommended):

 - Configure the PATH environment variable to include the JDK's "bin" directory. This will allow you to

run Java commands from any directory in the terminal/command prompt.

3. Choose a Text Editor or Integrated Development Environment (IDE):

 - For beginners, it's recommended to start with a simple text editor like Notepad++ (Windows) or

Nano/Vim (Linux/macOS) to write Java code.

 - Alternatively, you can use an Integrated Development Environment (IDE) like Eclipse, IntelliJ IDEA, or

NetBeans, which offer advanced features like code suggestions, debugging, and more. These can be

beneficial as your projects become more complex.

4. Write Your First Java Program:

 - Open your chosen text editor or IDE and create a new file with a .java extension. For example,

"HelloWorld.java".

 PASS Education System
Complete Languages Course

 www.passpk.com

 Prepared By: PASS Education System (PASS Team)
 Chief Executive: Taimoor Hassan

 - Write a simple Java program, like the classic "Hello, World!" example:

```java 

public class HelloWorld { 

    public static void main(String[] args) { 

        System.out.println("Hello, World!"); 

    } 

} 

``` 

5. Save the File:

 - Save the file with the .java extension in a location you can easily access.

6. Compile Your Java Program:

 - Open your terminal or command prompt and navigate to the directory where you saved your .java

file.

 - Use the "javac" command to compile your Java program:

     ``` 

     javac HelloWorld.java 

     ``` 

 - If there are no syntax errors, this will generate a .class file with the same name as your class (e.g.,

HelloWorld.class).

7. Run Your Java Program:

 - After successfully compiling your program, use the "java" command to run it:

     ``` 

     java HelloWorld 

     ``` 

 - You should see the output: "Hello, World!"

 PASS Education System
Complete Languages Course

 www.passpk.com

 Prepared By: PASS Education System (PASS Team)
 Chief Executive: Taimoor Hassan

Basics Operators for Swift?

In Java, operators are symbols or special characters that perform specific operations on operands

(variables, constants, or expressions). Java has several types of operators, which can be broadly

classified into the following categories:

1. Arithmetic Operators:

 - Addition (+): Adds two operands.

 - Subtraction (-): Subtracts the right operand from the left operand.

 - Multiplication (*): Multiplies two operands.

 - Division (/): Divides the left operand by the right operand.

 - Modulus (%): Returns the remainder of the division of the left operand by the right operand.

2. Assignment Operators:

 - Assignment (=): Assigns the value of the right operand to the left operand.

 - Addition assignment (+=): Adds the value of the right operand to the left operand and assigns the

result to the left operand.

 - Subtraction assignment (-=): Subtracts the value of the right operand from the left operand and

assigns the result to the left operand.

 - Multiplication assignment (*=): Multiplies the left operand by the value of the right operand and

assigns the result to the left operand.

 - Division assignment (/=): Divides the left operand by the value of the right operand and assigns the

result to the left operand.

 - Modulus assignment (%=): Calculates the modulus of the left operand with the value of the right

operand and assigns the result to the left operand.

3. Increment/Decrement Operators:

 - Increment (++) : Increases the value of the operand by 1.

 - Decrement (--) : Decreases the value of the operand by 1.

 PASS Education System
Complete Languages Course

 www.passpk.com

 Prepared By: PASS Education System (PASS Team)
 Chief Executive: Taimoor Hassan

4. Comparison Operators:

 - Equal to (==): Checks if two operands are equal.

 - Not equal to (!=): Checks if two operands are not equal.

 - Greater than (>): Checks if the left operand is greater than the right operand.

 - Less than (<): Checks if the left operand is less than the right operand.

 - Greater than or equal to (>=): Checks if the left operand is greater than or equal to the right operand.

 - Less than or equal to (<=): Checks if the left operand is less than or equal to the right operand.

5. Logical Operators:

 - Logical AND (&&): Returns true if both operands are true.

 - Logical OR (||): Returns true if at least one operand is true.

 - Logical NOT (!): Reverses the logical state of the operand.

6. Bitwise Operators:

 - Bitwise AND (&): Performs bitwise AND on the operands.

 - Bitwise OR (|): Performs bitwise OR on the operands.

 - Bitwise XOR (^): Performs bitwise XOR (exclusive OR) on the operands.

 - Bitwise NOT (~): Inverts the bits of the operand.

 - Left shift (<<): Shifts the bits of the left operand to the left by the number of positions specified in the

right operand.

 - Right shift (>>): Shifts the bits of the left operand to the right by the number of positions specified in

the right operand.

 - Unsigned right shift (>>>): Shifts the bits of the left operand to the right by the number of positions

specified in the right operand, filling the leftmost positions with zeroes.

These operators are fundamental building blocks of Java programming, allowing you to manipulate data

and perform various operations on variables and expressions.

 PASS Education System
Complete Languages Course

 www.passpk.com

 Prepared By: PASS Education System (PASS Team)
 Chief Executive: Taimoor Hassan

Basics Variables and data types in Java

In Java, variables are used to store and manipulate data. Each variable has a data type that defines the

type of data it can hold. Java supports several built-in data types, which can be broadly classified into

two categories: primitive data types and reference data types.

1. Primitive Data Types:

 - byte: 8-bit signed integer (-128 to 127)

 - short: 16-bit signed integer (-32,768 to 32,767)

 - int: 32-bit signed integer (-2^31 to 2^31-1)

 - long: 64-bit signed integer (-2^63 to 2^63-1)

 - float: 32-bit floating-point number (single-precision)

 - double: 64-bit floating-point number (double-precision)

 - char: 16-bit Unicode character (0 to 65,535)

 - boolean: Represents true or false values

Example of variable declaration and initialization:

```java 

int age = 25; 

double salary = 50000.50; 

char grade = 'A'; 

boolean isEmployed = true; 

``` 


2. Reference Data Types:

Reference data types are used to refer to objects. They don't directly store the data but hold references

(memory addresses) to the objects stored in the heap.

 PASS Education System
Complete Languages Course

 www.passpk.com

 Prepared By: PASS Education System (PASS Team)
 Chief Executive: Taimoor Hassan

Example of a reference variable declaration and initialization:

```java 

String name = "John Doe"; 

``` 


Java also supports arrays, which are reference data types, but they can hold multiple values of the same

type.

Example of an array declaration and initialization:

```java 

int[] numbers = {1, 2, 3, 4, 5}; 

``` 


Additionally, Java provides a special data type called `null`, which represents the absence of a value or a

reference that doesn't point to any object.

Example of initializing a reference variable with `null`:

```java 

String address = null; 

``` 


It's important to choose appropriate data types for variables to efficiently utilize memory and ensure

proper data representation. Primitive data types are stored directly in memory, while reference data

types store references to objects that exist in the heap.

Basics Functions and applications of Functions in Java

In Java, functions are called methods. A method is a block of code that performs a specific task and can

be called (invoked) from other parts of the program. Methods in Java are used for code organization,

 PASS Education System
Complete Languages Course

 www.passpk.com

 Prepared By: PASS Education System (PASS Team)
 Chief Executive: Taimoor Hassan

reusability, and to break down complex tasks into smaller, manageable pieces. Here are the main

aspects and applications of methods in Java:

1. **Modularity and Code Organization:** Methods allow you to break down a large program into

smaller, self-contained modules. Each method can focus on a specific task, making the code easier to

understand, read, and maintain.

2. **Code Reusability:** Once you define a method, you can call it multiple times from different parts of

the program, reducing code duplication and promoting reusability.

3. **Abstraction:** Methods allow you to hide the implementation details of a task behind a method

signature. Other parts of the program only need to know how to call the method and what it does, not

how it does it.

4. **Parameter Passing:** Methods can accept parameters, which are values passed to the method to

be used in its execution. This allows you to customize the behavior of the method based on the input

data.

5. **Return Values:** Methods can also return values back to the caller. This allows methods to provide

results or data back to the calling code.

6. **Java Standard Library:** Java comes with a vast standard library that contains a wide range of pre-

defined methods to perform various tasks. These methods cover operations such as string manipulation,

file I/O, mathematical calculations, date/time handling, and much more.

Example of a simple method in Java:

```java 

public class MathUtils { 

    // A method that adds two integers and returns the result. 

    public static int add(int a, int b) { 

        return a + b; 



    PASS Education System 
Complete Languages Course 

 www.passpk.com 
 

 Prepared By: PASS Education System (PASS Team) 
 Chief Executive: Taimoor Hassan 

    } 

 

    public static void main(String[] args) { 

        int result = add(5, 3); // Call the add method 

        System.out.println("The sum is: " + result); 

    } 

} 

``` 


Applications of Methods in Java:

Calculations and Algorithms: Methods are commonly used to implement complex calculations and

algorithms, such as sorting, searching, and mathematical operations.

Data Processing: Methods are used to process data, perform data validation, and data transformation

tasks.

User Input Handling: Methods are used to interact with users and handle user input, making the

program more interactive.

File Operations: Methods can be used to read from and write to files, allowing data to be stored and

retrieved from external sources.

Networking: In network programming, methods are used to establish connections, send and receive

data over networks.

User Interface (UI): In graphical user interface (GUI) development, methods handle user interactions

with buttons, menus, and other UI components.

 PASS Education System
Complete Languages Course

 www.passpk.com

 Prepared By: PASS Education System (PASS Team)
 Chief Executive: Taimoor Hassan

In summary, methods (functions) in Java provide a powerful way to structure code, promote reusability,

and modularize tasks, enabling developers to create efficient and organized Java programs for a wide

range of applications.

Input and Output in Java

In Java, input and output (I/O) operations are essential for interacting with users and external data

sources, such as files, databases, and network connections. Java provides various classes and methods in

its standard library to perform input and output operations.

Console Input/Output:

 - For console input (keyboard input), you can use the `java.util.Scanner` class. It allows you to read

data entered by the user from the console.

 Example of reading user input from the console:

   ```java 

   import java.util.Scanner; 

 

   public class ConsoleInput { 

       public static void main(String[] args) { 

           Scanner scanner = new Scanner(System.in); 

           System.out.print("Enter your name: "); 

           String name = scanner.nextLine(); 

           System.out.println("Hello, " + name + "!"); 

           scanner.close(); 

       } 

   } 

   ``` 


 PASS Education System
Complete Languages Course

 www.passpk.com

 Prepared By: PASS Education System (PASS Team)
 Chief Executive: Taimoor Hassan

File Input/Output:

 - To read data from a file or write data to a file, you can use the `java.io` package. Classes like `File`,

`FileReader`, `FileWriter`, `BufferedReader`, and `BufferedWriter` are commonly used for file I/O

operations.

 Example of reading data from a file:

   ```java 

   import java.io.BufferedReader; 

   import java.io.FileReader; 

   import java.io.IOException; 

 

   public class FileInput { 

       public static void main(String[] args) { 

           try (BufferedReader reader = new BufferedReader(new FileReader("input.txt"))) { 

               String line; 

               while ((line = reader.readLine()) != null) { 

                   System.out.println(line); 

               } 

           } catch (IOException e) { 

               e.printStackTrace(); 

           } 

       } 

   } 

   ``` 


Standard Output (Console Printing):

 PASS Education System
Complete Languages Course

 www.passpk.com

 Prepared By: PASS Education System (PASS Team)
 Chief Executive: Taimoor Hassan

 - For standard output (printing messages to the console), you can use `System.out.println()` or

`System.out.print()`.

 Example of console output:

   ```java 

   public class ConsoleOutput { 

       public static void main(String[] args) { 

           System.out.println("Hello, World!"); 

           int number = 42; 

           System.out.print("The answer is: "); 

           System.out.println(number); 

       } 

   } 

   ``` 


Error Output (Console Printing):

 - For printing error messages or diagnostics to the console, you can use `System.err.println()`.

 Example of error console output:

   ```java 

   public class ErrorConsoleOutput { 

       public static void main(String[] args) { 

           System.err.println("This is an error message."); 

       } 

   } 

   ``` 


 PASS Education System
Complete Languages Course

 www.passpk.com

 Prepared By: PASS Education System (PASS Team)
 Chief Executive: Taimoor Hassan

Network Input/Output:

 - For communication over the network, Java provides classes like `java.net.Socket` and

`java.net.ServerSocket` for client-server communication using TCP/IP.

Serialization and Deserialization:

 - Java supports serialization, which allows you to convert objects into a binary format and store them

in files or send them over the network. Deserialization is the process of reconstructing objects from the

serialized data.

These are some of the common input and output operations in Java. Remember to handle exceptions

appropriately when dealing with I/O operations, as they can throw IOExceptions or other exceptions if

something goes wrong during the process.

Flow control in Java

Flow control in Java refers to the mechanism of controlling the order of execution of statements and the

flow of program execution based on certain conditions or decisions. Java provides various constructs for

flow control, including conditional statements and looping constructs. These help in making decisions,

repeating code blocks, and creating more flexible and dynamic programs. Here are the main flow control

constructs in Java:

1. **Conditional Statements:**

 - `if`: The basic conditional statement that executes a block of code if a specified condition is true.

 Example of `if` statement:

     ```java 

     int age = 25; 

     if (age >= 18) { 

         System.out.println("You are an adult."); 

     } 



    PASS Education System 
Complete Languages Course 

 www.passpk.com 
 

 Prepared By: PASS Education System (PASS Team) 
 Chief Executive: Taimoor Hassan 

     ``` 


 - `if-else`: A conditional statement that executes one block of code if the condition is true, and another

block if the condition is false.

 Example of `if-else` statement:

     ```java 

     int num = 10; 

     if (num % 2 == 0) { 

         System.out.println("Even number."); 

     } else { 

         System.out.println("Odd number."); 

     } 

     ``` 


 - `else if`: A variation of `if-else` that allows you to check multiple conditions.

 Example of `else if` statement:

     ```java 

     int score = 80; 

     if (score >= 90) { 

         System.out.println("A"); 

     } else if (score >= 80) { 

         System.out.println("B"); 

     } else if (score >= 70) { 

         System.out.println("C"); 

     } else { 



    PASS Education System 
Complete Languages Course 

 www.passpk.com 
 

 Prepared By: PASS Education System (PASS Team) 
 Chief Executive: Taimoor Hassan 

         System.out.println("F"); 

     } 

     ``` 


2. **Switch Statement:**

 - The `switch` statement allows you to select one of many code blocks to be executed based on the

value of an expression.

 Example of `switch` statement:

   ```java 

   int dayOfWeek = 2; 

   switch (dayOfWeek) { 

       case 1: 

           System.out.println("Sunday"); 

           break; 

       case 2: 

           System.out.println("Monday"); 

           break; 

       case 3: 

           System.out.println("Tuesday"); 

           break; 

       // and so on... 

       default: 

           System.out.println("Invalid day"); 

   } 

   ``` 


 PASS Education System
Complete Languages Course

 www.passpk.com

 Prepared By: PASS Education System (PASS Team)
 Chief Executive: Taimoor Hassan

3. **Looping Constructs:**

 - `while`: Repeats a block of code as long as a specified condition is true.

 Example of `while` loop:

   ```java 

   int count = 0; 

   while (count < 5) { 

       System.out.println("Count: " + count); 

       count++; 

   } 

   ``` 


 - `do-while`: Similar to `while`, but the code block is executed at least once, and the condition is

checked after the execution.

 Example of `do-while` loop:

   ```java 

   int x = 1; 

   do { 

       System.out.println("Value of x: " + x); 

       x++; 

   } while (x <= 5); 

   ``` 


 - `for`: A loop that repeats a block of code for a fixed number of times.

 Example of `for` loop:

 PASS Education System
Complete Languages Course

 www.passpk.com

 Prepared By: PASS Education System (PASS Team)
 Chief Executive: Taimoor Hassan

   ```java 

   for (int i = 1; i <= 5; i++) { 

       System.out.println("Iteration: " + i); 

   } 

   ``` 


 - `foreach` (Enhanced for loop): Simplified way of iterating over arrays or collections.

 Example of `foreach` loop:

   ```java 

   int[] numbers = {1, 2, 3, 4, 5}; 

   for (int num : numbers) { 

       System.out.println(num); 

   } 

   ``` 


Flow control constructs are fundamental to Java programming, enabling you to create dynamic and

responsive applications by controlling the execution flow based on conditions and looping over data

structures.

Escape Sequence in Java

In Java, escape sequences are special character combinations used within string literals to represent

characters that are difficult or impossible to represent directly. These escape sequences are always

prefixed with a backslash (`\`). They allow you to include characters such as quotes, newlines, tabs, and

other special characters within string literals. Here are some common escape sequences used in Java:

1. `\"`: Double Quote (")

 PASS Education System
Complete Languages Course

 www.passpk.com

 Prepared By: PASS Education System (PASS Team)
 Chief Executive: Taimoor Hassan

 - Represents a double quote character within a double-quoted string.

2. `\'`: Single Quote (')

 - Represents a single quote character within a single-quoted or character literal.

3. `\\`: Backslash (\)

 - Represents a backslash character within a string.

4. `\n`: Newline

 - Represents a newline (line break) character.

5. `\t`: Horizontal Tab

 - Represents a horizontal tab character.

6. `\r`: Carriage Return

 - Represents a carriage return character.

7. `\b`: Backspace

 - Represents a backspace character.

8. `\f`: Form Feed

 - Represents a form feed character.

9. `\u####`: Unicode Escape

 - Represents a Unicode character with the specified four hexadecimal digits (####).

Examples of using escape sequences in Java:

 PASS Education System
Complete Languages Course

 www.passpk.com

 Prepared By: PASS Education System (PASS Team)
 Chief Executive: Taimoor Hassan


```java 

public class EscapeSequences { 

    public static void main(String[] args) { 

        System.out.println("This is a double quote: \""); 

        System.out.println("This is a single quote: \'"); 

        System.out.println("This is a backslash: \\"); 

        System.out.println("This is a newline:\nHello, World!"); 

        System.out.println("This is a tab:\tHello, World!"); 

        System.out.println("This is a carriage return:\rHello, World!"); 

        System.out.println("This is a backspace:\bHello, World!"); 

        System.out.println("This is a form feed:\fHello, World!"); 

        System.out.println("This is a Unicode character: \u03B1"); // Represents the Greek letter alpha (α) 

    } 

} 

``` 


Output:

``` 

This is a double quote: " 

This is a single quote: ' 

This is a backslash: \ 

This is a newline: 

Hello, World! 

This is a tab:    Hello, World! 

This is a carriage return: 

lo, World! 



    PASS Education System 
Complete Languages Course 

 www.passpk.com 
 

 Prepared By: PASS Education System (PASS Team) 
 Chief Executive: Taimoor Hassan 

This is a backspace:Hello, World! 

This is a form feed: 

Hello, World! 

This is a Unicode character: α 

``` 


Escape sequences make it easier to handle special characters and create more readable strings in Java.

Loops in Java

In Java, loops are used to execute a block of code repeatedly based on a specified condition. There are

three main types of loops in Java:

while loop:

 The `while` loop repeatedly executes a block of code as long as a specified condition is true.

 Syntax:

   ```java 

   while (condition) { 

       // Code to be executed 

   } 

   ``` 


 Example:

   ```java 

   int count = 1; 

   while (count <= 5) { 



    PASS Education System 
Complete Languages Course 

 www.passpk.com 
 

 Prepared By: PASS Education System (PASS Team) 
 Chief Executive: Taimoor Hassan 

       System.out.println("Count: " + count); 

       count++; 

   } 

   ``` 


do-while loop:

 The `do-while` loop is similar to the `while` loop, but the block of code is executed at least once, and

then the condition is checked.

 Syntax:

   ```java 

   do { 

       // Code to be executed 

   } while (condition); 

   ``` 


 Example:

   ```java 

   int i = 1; 

   do { 

       System.out.println("Value of i: " + i); 

       i++; 

   } while (i <= 5); 

   ``` 


for loop:

 The `for` loop executes a block of code for a fixed number of times, based on the initialization,

condition, and increment/decrement.

 PASS Education System
Complete Languages Course

 www.passpk.com

 Prepared By: PASS Education System (PASS Team)
 Chief Executive: Taimoor Hassan

 Syntax:

   ```java 

   for (initialization; condition; increment/decrement) { 

       // Code to be executed 

   } 

   ``` 


 Example:

   ```java 

   for (int i = 1; i <= 5; i++) { 

       System.out.println("Iteration: " + i); 

   } 

   ``` 


The choice of which loop to use depends on the specific use case and the nature of the problem being

solved. While `for` loops are often used when the number of iterations is known, `while` and `do-while`

loops are used when the number of iterations depends on certain conditions.

Additionally, Java provides an enhanced for loop (also known as the `foreach` loop) for iterating over

arrays and collections. It simplifies the syntax when you need to loop through the elements of an array

or collection.

Enhanced for loop (foreach loop) syntax:

```java 

for (datatype variable : array/collection) { 

    // Code to be executed for each element 

} 



    PASS Education System 
Complete Languages Course 

 www.passpk.com 
 

 Prepared By: PASS Education System (PASS Team) 
 Chief Executive: Taimoor Hassan 

``` 


Example:

```java 

int[] numbers = {1, 2, 3, 4, 5}; 

for (int num : numbers) { 

    System.out.println(num); 

} 

``` 


Java loops provide powerful mechanisms to handle repetitive tasks and are a fundamental concept in

programming. They play a crucial role in controlling the flow of a program and optimizing code

execution.

Arrays in Java

In Java, an array is a data structure that allows you to store multiple values of the same data type in a

single variable. Arrays provide a way to group elements together, making it easier to work with

collections of data. Each element in an array is accessed by its index, which starts from 0 and goes up to

(array.length - 1).

To use arrays in Java, you need to:

1. Declare the array.

2. Create the array (allocate memory for it).

3. Initialize the array elements (optional).

4. Access and manipulate the elements of the array.

 PASS Education System
Complete Languages Course

 www.passpk.com

 Prepared By: PASS Education System (PASS Team)
 Chief Executive: Taimoor Hassan

Here's an overview of how to work with arrays in Java:

Declaring an Array:

 To declare an array, you need to specify the data type of the elements it will hold, followed by square

brackets `[]` to indicate that it's an array, and the name of the array.

 Syntax:

   ```java 

   dataType[] arrayName; 

   ``` 


 Example:

   ```java 

   int[] numbers; // Declaration of an integer array 

   String[] names; // Declaration of a string array 

   ``` 


Creating an Array:

 To create an array, you use the `new` keyword along with the data type and the number of elements

you want the array to hold.

 Syntax:

   ```java 

   arrayName = new dataType[arraySize]; 

   ``` 


 Example:

 PASS Education System
Complete Languages Course

 www.passpk.com

 Prepared By: PASS Education System (PASS Team)
 Chief Executive: Taimoor Hassan

   ```java 

   numbers = new int[5]; // Creates an integer array of size 5 

   names = new String[3]; // Creates a string array of size 3 

   ``` 


Initializing Array Elements:

 You can initialize the elements of the array at the time of creation using curly braces `{}`.

 Syntax:

   ```java 

   dataType[] arrayName = {value1, value2, value3, ...}; 

   ``` 


 Example:

   ```java 

   int[] numbers = {1, 2, 3, 4, 5}; // Initializes the elements of the integer array 

   String[] names = {"Alice", "Bob", "Carol"}; // Initializes the elements of the string array 

   ``` 


Accessing Array Elements:

 You can access the elements of the array using their index. The index starts from 0 for the first element

and goes up to (array.length - 1).

 Syntax:

   ```java 

   arrayName[index]; 

   ``` 


 PASS Education System
Complete Languages Course

 www.passpk.com

 Prepared By: PASS Education System (PASS Team)
 Chief Executive: Taimoor Hassan

 Example:

   ```java 

   int[] numbers = {10, 20, 30, 40, 50}; 

   int firstNumber = numbers[0]; // Accesses the first element (index 0) -> 10 

   int thirdNumber = numbers[2]; // Accesses the third element (index 2) -> 30 

   ``` 


Array Length:

 You can find the length of the array (the number of elements it can hold) using the `length` property.

 Syntax:

   ```java 

   int length = arrayName.length; 

   ``` 


 Example:

   ```java 

   int[] numbers = {1, 2, 3, 4, 5}; 

   int arrayLength = numbers.length; // Returns 5 

   ``` 

Arrays are a fundamental data structure in Java, and they play a crucial role in various programming

tasks, such as data storage, data manipulation, and algorithm implementation.

String in Java

 PASS Education System
Complete Languages Course

 www.passpk.com

 Prepared By: PASS Education System (PASS Team)
 Chief Executive: Taimoor Hassan

In Java, a string is a sequence of characters. It is a widely used data type for representing textual data.

Java provides a built-in `String` class to work with strings, making it easy to perform various string-

related operations. Strings in Java are immutable, meaning their values cannot be changed after they

are created. Any operation that appears to modify a string actually creates a new string object with the

modified value.

Here are some common operations and features related to strings in Java:

Creating a String:

 You can create a string using string literals or by using the `new` keyword with the `String` class

constructor.

 Example:

   ```java 

   String message1 = "Hello, World!"; // Using string literal 

   String message2 = new String("Hello, Java!"); // Using constructor 

   ``` 

String Concatenation:

 You can concatenate (combine) strings using the `+` operator.

 Example:

   ```java 

   String firstName = "John"; 

   String lastName = "Doe"; 

   String fullName = firstName + " " + lastName; // "John Doe" 

   ``` 


String Length:

 You can find the length of a string using the `length()` method.

 Example:

   ```java 



    PASS Education System 
Complete Languages Course 

 www.passpk.com 
 

 Prepared By: PASS Education System (PASS Team) 
 Chief Executive: Taimoor Hassan 

   String text = "Hello, Java!"; 

   int length = text.length(); // Returns 12 

   ``` 


Accessing Characters:

 You can access individual characters in a string using the `charAt(index)` method.

 Example:

   ```java 

   String text = "Java"; 

   char firstChar = text.charAt(0); // 'J' 

   char lastChar = text.charAt(text.length() - 1); // 'a' 

   ``` 


Substring:

 You can extract a portion of a string using the `substring(beginIndex, endIndex)` method.

 Example:

   ```java 

   String text = "Hello, World!"; 

   String sub = text.substring(0, 5); // "Hello" 

   ``` 


String Comparison:

 You can compare strings using the `equals()` method or the `compareTo()` method.

 Example:

 PASS Education System
Complete Languages Course

 www.passpk.com

 Prepared By: PASS Education System (PASS Team)
 Chief Executive: Taimoor Hassan

   ```java 

   String str1 = "Hello"; 

   String str2 = "Hello"; 

   boolean isEqual = str1.equals(str2); // true 

 

   int result = str1.compareTo("World"); // Returns a value < 0, indicating str1 is "less" than "World" 

   ``` 


String Formatting:

 Java provides the `String.format()` method and the `printf()` method for formatting strings using

placeholders.

 Example:

   ```java 

   String name = "Alice"; 

   int age = 30; 

   String formatted = String.format("Name: %s, Age: %d", name, age); // "Name: Alice, Age: 30" 

   System.out.printf("Name: %s, Age: %d", name, age); // Output: "Name: Alice, Age: 30" 

   ``` 


String Methods:

 The `String` class provides many other useful methods for various string manipulations, such as

`toUpperCase()`, `toLowerCase()`, `replace()`, `trim()`, etc.

Strings are fundamental to Java programming, and they are used extensively in various applications for

tasks like user input, data processing, and communication with external systems. Remember that, due

to their immutability, any operation that appears to modify a string actually creates a new string object.

Therefore, if you need to perform frequent modifications on a string, consider using `StringBuilder` or

`StringBuffer` classes, which provide mutable string representations with better performance.

 PASS Education System
Complete Languages Course

 www.passpk.com

 Prepared By: PASS Education System (PASS Team)
 Chief Executive: Taimoor Hassan

Classes and Objects in Java

In Java, a class is a blueprint or template that defines the structure and behavior of objects. It serves as a

model for creating objects, which are instances of the class. Classes encapsulate data (attributes) and

methods (functions) that operate on that data.

Here's an overview of classes and objects in Java:

Class Definition:

 A class is defined using the `class` keyword, followed by the class name and a code block that contains

the class members (fields and methods).

 Example of a simple class definition:

   ```java 

   public class MyClass { 

       // Fields (instance variables) 

       int age; 

       String name; 

 

       // Methods 

       void displayInfo() { 

           System.out.println("Name: " + name + ", Age: " + age); 

       } 

   } 

   ``` 


Creating Objects (Instantiation):

 PASS Education System
Complete Languages Course

 www.passpk.com

 Prepared By: PASS Education System (PASS Team)
 Chief Executive: Taimoor Hassan

 To create an object of a class, you use the `new` keyword along with the class constructor.

 Example of creating an object:

   ```java 

   MyClass obj = new MyClass(); 

   ``` 


Accessing Class Members:

 Once you have an object, you can access the fields and call the methods of the class using the dot (`.`)

operator.

 Example of accessing class members:

   ```java 

   obj.name = "John"; 

   obj.age = 30; 

   obj.displayInfo(); // Output: "Name: John, Age: 30" 

   ``` 


Constructors:

 A constructor is a special method used to initialize the object when it's created. It has the same name

as the class and no return type.

 Example of a constructor:

   ```java 

   public class MyClass { 

       int age; 

       String name; 

 



    PASS Education System 
Complete Languages Course 

 www.passpk.com 
 

 Prepared By: PASS Education System (PASS Team) 
 Chief Executive: Taimoor Hassan 

       // Constructor 

       public MyClass(String name, int age) { 

           this.name = name; 

           this.age = age; 

       } 

 

       void displayInfo() { 

           System.out.println("Name: " + name + ", Age: " + age); 

       } 

   } 

   ``` 


 Example of using the constructor to create an object:

   ```java 

   MyClass obj = new MyClass("Alice", 25); 

   ``` 


Access Modifiers:

 Java provides access modifiers (`public`, `private`, `protected`, and default) to control the visibility of

class members.

Getters and Setters:

 To provide controlled access to the fields of a class, you can use getter and setter methods.

 Example of getter and setter methods:

   ```java 

   public class MyClass { 



    PASS Education System 
Complete Languages Course 

 www.passpk.com 
 

 Prepared By: PASS Education System (PASS Team) 
 Chief Executive: Taimoor Hassan 

       private int age; 

       private String name; 

 

       public int getAge() { 

           return age; 

       } 

 

       public void setAge(int age) { 

           this.age = age; 

       } 

 

       public String getName() { 

           return name; 

       } 

 

       public void setName(String name) { 

           this.name = name; 

       } 

 

       void displayInfo() { 

           System.out.println("Name: " + name + ", Age: " + age); 

       } 

   } 

   ``` 


Static Members:

 PASS Education System
Complete Languages Course

 www.passpk.com

 Prepared By: PASS Education System (PASS Team)
 Chief Executive: Taimoor Hassan

 Static fields and methods belong to the class rather than individual objects. They are shared by all

objects of the class.

 Example of a static field and method:

   ```java 

   public class MyClass { 

       static int count = 0; // Static field 

 

       public MyClass() { 

           count++; 

       } 

 

       static int getCount() { // Static method 

           return count; 

       } 

   } 

   ``` 


Final Keyword:

 The `final` keyword can be used to make a class, field, or method immutable (cannot be changed).

 Example of a final field:

   ```java 

   public class Circle { 

       final double PI = 3.14159265359; 

       // Other code... 

   } 



    PASS Education System 
Complete Languages Course 

 www.passpk.com 
 

 Prepared By: PASS Education System (PASS Team) 
 Chief Executive: Taimoor Hassan 

   ``` 


Classes and objects are fundamental concepts in object-oriented programming (OOP). They help in

organizing code, achieving encapsulation, and modeling real-world entities in software systems.

Streams and Lambda Expressions in Java

Streams and lambda expressions are two powerful features introduced in Java 8 that significantly

enhance the way data is processed and manipulated in Java.

1. **Lambda Expressions:**

 Lambda expressions provide a concise way to represent functional interfaces (interfaces with a single

abstract method). They enable the use of functions as method arguments, inline implementation of

functional interfaces, and the definition of small, anonymous functions.

 Lambda expression syntax:

   ``` 

   (parameters) -> expression or statement block 

   ``` 


 Example of a lambda expression:

   ```java 

   // Traditional anonymous inner class 

   Runnable runnable = new Runnable() { 

       @Override 

       public void run() { 

           System.out.println("Hello, World!"); 

       } 

   }; 



    PASS Education System 
Complete Languages Course 

 www.passpk.com 
 

 Prepared By: PASS Education System (PASS Team) 
 Chief Executive: Taimoor Hassan 

 

   // Equivalent lambda expression 

   Runnable runnableLambda = () -> System.out.println("Hello, World!"); 

   ``` 


 Lambda expressions are commonly used in conjunction with functional interfaces like `Predicate`,

`Consumer`, `Function`, and `Supplier` to create more expressive and readable code.

2. **Streams:**

 Streams provide a declarative and functional approach to process collections of data in Java. They

allow for concise, sequential, and parallel processing of data without requiring explicit loops.

 Streams operate on collections (arrays, lists, sets, etc.) and provide methods for filtering, mapping,

sorting, and reducing data.

 Example of using a stream:

   ```java 

   List<String> names = Arrays.asList("Alice", "Bob", "Charlie", "David"); 

 

   // Using streams to filter and print names starting with 'C' 

   names.stream() 

        .filter(name -> name.startsWith("C")) 

        .forEach(System.out::println); 

   ``` 


 In this example, the `filter()` method filters the names starting with 'C', and the `forEach()` method

prints each filtered name.

 PASS Education System
Complete Languages Course

 www.passpk.com

 Prepared By: PASS Education System (PASS Team)
 Chief Executive: Taimoor Hassan

 Streams make the code more expressive, and they enable better performance by utilizing parallel

processing when applicable.

Combining lambda expressions and streams can lead to more elegant and efficient code for data

manipulation and processing in Java. They have become popular tools for modern Java developers to

write cleaner, more readable, and maintainable code.

Queue , Deque and Priority Queue in Java

In Java, `Queue`, `Deque`, and `PriorityQueue` are interfaces that represent different types of data

structures for storing elements in a specific order. These interfaces are part of the Java Collections

Framework and are available in the `java.util` package. Here's an overview of each interface:

Queue Interface:

 The `Queue` interface represents a classic First-In-First-Out (FIFO) data structure, where elements are

inserted at the end of the queue and removed from the front. It extends the `Collection` interface and

defines methods for adding, removing, and inspecting elements.

 Some important methods of the `Queue` interface:

 - `add(E element)`: Adds an element to the end of the queue. Throws an exception if the queue is full.

 - `offer(E element)`: Adds an element to the end of the queue. Returns `true` if successful; otherwise,

returns `false`.

 - `remove()`: Removes and returns the element at the front of the queue. Throws an exception if the

queue is empty.

 - `poll()`: Removes and returns the element at the front of the queue. Returns `null` if the queue is

empty.

 - `peek()`: Returns the element at the front of the queue without removing it. Returns `null` if the

queue is empty.

 Example of using the `Queue` interface:

   ```java 

   Queue<String> queue = new LinkedList<>(); 

   queue.offer("A"); 



    PASS Education System 
Complete Languages Course 

 www.passpk.com 
 

 Prepared By: PASS Education System (PASS Team) 
 Chief Executive: Taimoor Hassan 

   queue.offer("B"); 

   queue.offer("C"); 

 

   while (!queue.isEmpty()) { 

       System.out.println(queue.poll()); 

   } 

   ``` 


Deque Interface:

 The `Deque` interface represents a double-ended queue, which allows you to insert and remove

elements from both ends of the queue. It extends the `Queue` interface and provides additional

methods for stack-like operations (push, pop) and deque-specific operations.

 Some important methods of the `Deque` interface:

 - `addFirst(E element)`, `addLast(E element)`: Adds an element to the front or end of the deque,

respectively.

 - `offerFirst(E element)`, `offerLast(E element)`: Adds an element to the front or end of the deque.

Returns `true` if successful; otherwise, returns `false`.

 - `removeFirst()`, `removeLast()`: Removes and returns the element from the front or end of the

deque, respectively.

 - `pollFirst()`, `pollLast()`: Removes and returns the element from the front or end of the deque.

Returns `null` if the deque is empty.

 - `getFirst()`, `getLast()`: Returns the element from the front or end of the deque without removing it.

Throws an exception if the deque is empty.

 Example of using the `Deque` interface:

   ```java 

   Deque<String> deque = new LinkedList<>(); 

   deque.addLast("A"); 



    PASS Education System 
Complete Languages Course 

 www.passpk.com 
 

 Prepared By: PASS Education System (PASS Team) 
 Chief Executive: Taimoor Hassan 

   deque.addLast("B"); 

   deque.addLast("C"); 

 

   while (!deque.isEmpty()) { 

       System.out.println(deque.pollFirst()); 

   } 

   ``` 


PriorityQueue Class:

 The `PriorityQueue` class is an implementation of the `Queue` interface that stores elements in a

priority order. Elements are removed from the queue based on their natural ordering or a specified

comparator. The smallest (or highest, depending on the order) element is removed first.

 Example of using `PriorityQueue`:

   ```java 

   PriorityQueue<Integer> pq = new PriorityQueue<>(); 

   pq.offer(10); 

   pq.offer(5); 

   pq.offer(20); 

 

   while (!pq.isEmpty()) { 

       System.out.println(pq.poll()); 

   } 

   ``` 


 Output: 5, 10, 20

 PASS Education System
Complete Languages Course

 www.passpk.com

 Prepared By: PASS Education System (PASS Team)
 Chief Executive: Taimoor Hassan

`Queue`, `Deque`, and `PriorityQueue` are versatile data structures that are useful in a wide range of

scenarios, such as task scheduling, priority-based processing, breadth-first search, and more. Depending

on your specific use case, you can choose the appropriate interface or implementation to achieve the

desired functionality.

Set in Java

In Java, a `Set` is an interface that represents a collection of elements with no duplicate values. It is part

of the Java Collections Framework and is available in the `java.util` package. Sets do not maintain any

specific order of elements. The main characteristic of a set is that it does not allow duplicate elements;

each element can only appear once in the set.

The `Set` interface is implemented by several classes in Java, such as `HashSet`, `TreeSet`, and

`LinkedHashSet`. Each of these implementations has different characteristics in terms of performance,

ordering, and use cases. Here's an overview of the `Set` interface and its common implementations:

1. **Set Interface:**

 The `Set` interface extends the `Collection` interface and defines the basic set operations like `add`,

`remove`, `contains`, etc.

 Some common methods of the `Set` interface:

 - `add(E element)`: Adds an element to the set if it is not already present.

 - `remove(Object element)`: Removes the specified element from the set if it exists.

 - `contains(Object element)`: Checks if the set contains the specified element.

 - `size()`: Returns the number of elements in the set.

 - `isEmpty()`: Checks if the set is empty.

 - `clear()`: Removes all elements from the set.

 Example of using the `Set` interface:

   ```java 

   Set<String> fruitSet = new HashSet<>(); 



    PASS Education System 
Complete Languages Course 

 www.passpk.com 
 

 Prepared By: PASS Education System (PASS Team) 
 Chief Executive: Taimoor Hassan 

   fruitSet.add("Apple"); 

   fruitSet.add("Banana"); 

   fruitSet.add("Orange"); 

   fruitSet.add("Apple"); // Duplicate, not added to the set 

 

   System.out.println(fruitSet); // Output: [Apple, Banana, Orange] 

   ``` 


2. **HashSet Class:**

 `HashSet` is one of the most commonly used implementations of the `Set` interface. It stores elements

in a hash table, providing constant-time complexity for basic operations like `add`, `remove`, and

`contains`. However, it does not guarantee any specific order of elements.

 Example of using `HashSet`:

   ```java 

   Set<Integer> numbers = new HashSet<>(); 

   numbers.add(10); 

   numbers.add(5); 

   numbers.add(20); 

 

   System.out.println(numbers); // Output: [5, 10, 20] (order may vary) 

   ``` 


3. **TreeSet Class:**

 `TreeSet` is an implementation of the `Set` interface that stores elements in a sorted tree structure. It

maintains elements in ascending order, and it allows efficient access to elements in sorted order.

 Example of using `TreeSet`:

 PASS Education System
Complete Languages Course

 www.passpk.com

 Prepared By: PASS Education System (PASS Team)
 Chief Executive: Taimoor Hassan

   ```java 

   Set<Integer> sortedNumbers = new TreeSet<>(); 

   sortedNumbers.add(10); 

   sortedNumbers.add(5); 

   sortedNumbers.add(20); 

 

   System.out.println(sortedNumbers); // Output: [5, 10, 20] (sorted order) 

   ``` 


4. **LinkedHashSet Class:**

 `LinkedHashSet` is a hybrid implementation that combines the features of `HashSet` and

`LinkedHashMap`. It maintains the order of insertion, which means the elements are stored in the order

they were added.

 Example of using `LinkedHashSet`:

   ```java 

   Set<String> orderedSet = new LinkedHashSet<>(); 

   orderedSet.add("Apple"); 

   orderedSet.add("Banana"); 

   orderedSet.add("Orange"); 

 

   System.out.println(orderedSet); // Output: [Apple, Banana, Orange] (order of insertion) 

   ``` 


`Set` implementations are useful for maintaining a unique collection of elements and efficiently checking

for element existence. Depending on your requirements, you can choose the appropriate

implementation that suits your use case, whether it requires ordering, sorting, or maintaining the order

of insertion.

 PASS Education System
Complete Languages Course

 www.passpk.com

 Prepared By: PASS Education System (PASS Team)
 Chief Executive: Taimoor Hassan

Map in Java

In Java, the `Map` interface is part of the Java Collections Framework and represents a mapping

between keys and values. It allows you to store and retrieve data in the form of key-value pairs. Each

key in a `Map` must be unique, and it is associated with a single value. Some commonly used

implementations of the `Map` interface include `HashMap`, `TreeMap`, `LinkedHashMap`, etc.

Here's an overview of the `Map` interface and its basic operations:

1. **Declaration:**

```java 

Map<KeyType, ValueType> map = new HashMap<>(); // You can use other implementations as well. 

``` 


2. **Adding elements:**

```java 

map.put(key1, value1); 

map.put(key2, value2); 

// ... 

``` 


3. **Accessing elements:**

```java 

ValueType value = map.get(key); // Returns the value associated with the key, or null if the key is not 

present. 

``` 


4. **Checking if the map contains a key:**

```java 



    PASS Education System 
Complete Languages Course 

 www.passpk.com 
 

 Prepared By: PASS Education System (PASS Team) 
 Chief Executive: Taimoor Hassan 

boolean containsKey = map.containsKey(key); 

``` 


5. **Checking if the map contains a value:**

```java 

boolean containsValue = map.containsValue(value); 

``` 


6. **Removing elements:**

```java 

ValueType removedValue = map.remove(key); // Removes the entry associated with the given key and 

returns the value, or null if the key is not present. 

``` 


7. **Size of the map:**

```java 

int size = map.size(); // Returns the number of key-value mappings in the map. 

``` 


8. **Iterating over the map:**

```java 

for (Map.Entry<KeyType, ValueType> entry : map.entrySet()) { 

    KeyType key = entry.getKey(); 

    ValueType value = entry.getValue(); 

    // Do something with the key-value pair. 

} 

``` 


 PASS Education System
Complete Languages Course

 www.passpk.com

 Prepared By: PASS Education System (PASS Team)
 Chief Executive: Taimoor Hassan

Here's an example using a `HashMap`:


```java 

import java.util.HashMap; 

import java.util.Map; 

 

public class MapExample { 

    public static void main(String[] args) { 

        // Create a HashMap 

        Map<String, Integer> ages = new HashMap<>(); 

 

        // Adding elements 

        ages.put("Alice", 28); 

        ages.put("Bob", 35); 

        ages.put("Charlie", 22); 

 

        // Accessing elements 

        int ageOfBob = ages.get("Bob"); 

        System.out.println("Bob's age is: " + ageOfBob); 

 

        // Checking if the map contains a key 

        if (ages.containsKey("Alice")) { 

            System.out.println("Alice is in the map."); 

        } 

 

        // Checking if the map contains a value 



    PASS Education System 
Complete Languages Course 

 www.passpk.com 
 

 Prepared By: PASS Education System (PASS Team) 
 Chief Executive: Taimoor Hassan 

        if (ages.containsValue(22)) { 

            System.out.println("Someone is 22 years old in the map."); 

        } 

 

        // Removing elements 

        int removedAge = ages.remove("Charlie"); 

        System.out.println("Removed Charlie's age: " + removedAge); 

 

        // Iterating over the map 

        for (Map.Entry<String, Integer> entry : ages.entrySet()) { 

            String name = entry.getKey(); 

            int age = entry.getValue(); 

            System.out.println(name + " is " + age + " years old."); 

        } 

    } 

} 

``` 


This example demonstrates some basic operations on a `HashMap`, but you can use the same methods

and principles with other implementations of the `Map` interface as well.

Algorithms

Java is a versatile programming language with a wide range of built-in algorithms and data structures

available through its standard library (java.util). Here are some commonly used algorithms in Java:

1. Sorting Algorithms:

 PASS Education System
Complete Languages Course

 www.passpk.com

 Prepared By: PASS Education System (PASS Team)
 Chief Executive: Taimoor Hassan

 - Bubble Sort

 - Selection Sort

 - Insertion Sort

 - Merge Sort

 - Quick Sort

 - Heap Sort

2. Searching Algorithms:

 - Linear Search

 - Binary Search

3. Graph Algorithms:

 - Breadth-First Search (BFS)

 - Depth-First Search (DFS)

 - Dijkstra's Shortest Path Algorithm

 - Bellman-Ford Shortest Path Algorithm

 - Kruskal's Minimum Spanning Tree Algorithm

 - Prim's Minimum Spanning Tree Algorithm

4. String Algorithms:

 - String Matching Algorithms (e.g., KMP, Boyer-Moore)

 - Longest Common Subsequence (LCS)

 - Longest Increasing Subsequence (LIS)

5. Dynamic Programming Algorithms:

 - Fibonacci Series

 - Knapsack Problem

 PASS Education System
Complete Languages Course

 www.passpk.com

 Prepared By: PASS Education System (PASS Team)
 Chief Executive: Taimoor Hassan

 - Edit Distance

 - Coin Change Problem

 - Matrix Chain Multiplication

6. Tree Algorithms:

 - Binary Tree Traversals (Inorder, Preorder, Postorder)

 - Binary Search Tree Operations (Insertion, Deletion, Search)

 - AVL Tree Operations (Balanced Binary Search Tree)

 - Red-Black Tree Operations (Self-balancing Binary Search Tree)

7. Hashing Algorithms:

 - Hashing Functions (e.g., MD5, SHA-1, SHA-256)

 - Hash Table (Java's HashMap)

8. Numerical Algorithms:

 - Sieve of Eratosthenes (Prime Number Generation)

 - Euclidean Algorithm (GCD Calculation)

 - Fast Exponentiation (Power Calculation)

 - Factorial Calculation

Remember that many of these algorithms are readily available in Java's standard library. For example,

sorting and searching algorithms are implemented in Arrays and Collections classes. Additionally, some

more advanced algorithms may be available through external libraries or packages. Always check the

official Java documentation or trusted resources for the most up-to-date and efficient implementations.

 Best Of Luck

 Don't Stop Until You Have Done Completely and Truly.

