PASS Education System

CHEMISTRY PART 1 COMPLETE MCQ's For:

(Board, UET-ECAT, NUST-NET, NTS-NAT)

Chapter #01

1.	Whic	h of the follow	wing cor	npounds has th	ne highest % a	ge of oxygen b	y weig	ht?	(LHR 05)
	(a)	CH ₃ –OH	(b)	C ₂ H ₅ –OH	(c)	HCOOH	(d)	H ₂ O	
2.	Form	ula mass of M	lgSO₄ is	g/mole:					(GRW 06)
	(a)	150	(b)	120	(c)	130	(d)	140	
3.	Elect	rometer is als	o called			101			(LHR 07)
	(a)	Voltmeter	(b)	Avometer	(c)	Ion collector	(d)	Galvano	ometer
4.	In co	ombustion ana	alysis H ₂	O vapors are at	osorbed by:	~ /	(LHR 07, 14	4, FSD 08)
	(a)	50% KOH	(b)	Mg (ClO ₄) ₂	(c)	NaOH	(d)	MgCl ₂	
5.	Heig	ht of peak in r	nass spe	ectrum shows:	NN SY				(LHR 08)
	(a)	Number of is	otopes		(b)	Mass number			
	(c)	Relative abu	ndance		(d)	Number of pro	otons		
6.	The	volume occupi	ied by 1	4 g of N ₂ atS.T	T.P is:	(50	GD 09, 1	11, LHR 10), GRW 08)
_	(a)	2.24 dm ³	(b)	22.4 dm ³	(C)	1.12 dm ³	(d)	112 dm	³
7.	Mole	cular mass of		s: (R)		100	(I)		(LHR 09)
•	(a)	100	(b)	90	(c)	120	(d)	106	
8.	Perc	entage of oxy	gen in w	ater is:		0.00/		0.00/	(LHR 09)
•	(a)	80%	(D)	88.89%	(C)	8.8%	(a)	9.8%	
9.			t is one v					(MIN 10	, GRW 09)
	(a) (b)	Is taken in le	esser qua	ntity in grams as	compared to otr				
	(U) (c)		sser quar	itity in volume as				unt of much	uat
10	(C) Tin h			it of product	(u)	Gives minimu	II alliou	int or prou	
10.	(a)	7	(b)	٥		11	(d)	5	(LHK II)
11	(a) Emni	, irical formula	of aluco	ج <u>م</u> اد.	(0)	11	(u)	5	(GPW 11)
	(a)	CHO	(h)		(c)	CH2O	(d)		
12.	The	mass of CO ₂ c	ontainin	a 8 grams of o	xvaen (O2) in a	rams is:	(4)	00.1120	(GRW 11)
	(a)	32	(b)	22	(c)	16	(d)	11	
13.	1 am	u is equal to:	(-)				(-)		(LHR 11)
					1				/
		Prep	ared B	v: PASS Educ	cation Syste	m (Team)			

For Online Entry Test Preparation: 0304-0666000 For Evening Coaching: 0310-4745204

	(a)	$1.661 \times 10^{27} \text{ kg}$	(b)	$1.661 imes 10^{-26}$ kg	(c)	1.661×10^{-24}	kg (d)	$1.661\times 10^{\text{-}24}\text{ g}$
14.	Cadn	nium has isotope	es:					(LHR 10)
	(a)	9	(b)	16	(c)	17	(d)	18
15.	An or	rdinary microsco	pe ca	n measure size o	of object up to	D:		(FSD 07)
	(a)	100nm	(b)	200 nm	(c)	400 nm	(d)	500 nm
16.	How	many times a he	emog	obin molecule is	heavier than	hydrogen ato	m?	(FSD 10)
	(a)	38000 times	(b)	58000 times	(c)	68000 times	(d)	88000 times
			/ ★			\$) *		

PASS[®]Education system

EDUCATION

```
www.passpk.com
```

17.	Isoto	pes are sister	atoms o	of same element	t with simila	r chemical pro	perties	but diffe	rent:
	(a)	Atomic numb	er		(b)	Atomic volur	ne		(RWP 09)
	(c)	Atomic weigh	t		(d)	Atomic struc	ture		
18.	The vo	lume occupied	i by 28 🤅	g of N_2 at STP is	:				(RWP 10)
	(a)	22.414 dm ³	(b)	2.2414 dm ³	(c)	224.14 dm ³	(d)	1.12 d	m ³
19.	One	mole of SO ₂ co	ntains.						(SGD 09)
	(a)	$6.02 imes 10^{23}$ at	tom of o	kygen	(b)	18.1×10 ²³ m	olecules o	of SO ₂	
	(c)	$6.02 imes 10^{23}$ at	toms of s	sulphur	(d)	4 grams ato	m of SO_2		
20.	The p	pressure of va	pors ma	intained in <mark>ioni</mark> z	ation chamb	er of mass sp	ectrome	ter durir	ng isotopic
	analy	/sis is:	/			\sim			(SGD 10)
	(a)	10 ³ torr	(b)	Around 10 ⁻⁵ tor	r (c)	Around 10 ⁻⁷	torr	(d)	10 ⁻⁹ torr
21.	18.02	2 g of H ₂ O sam	ple has	- /					(MTN 07)
	(a)	1 mole of Hyd	drogen af	toms	(b)	1/2 mole of o	xygen ato	om	
	(c)	6.922 × 10 ²³ I	moles of	H ₂ O	(d)	6.022×10 ²³ I	Molecules	of H ₂ O	
22.	The p	percentage of	Nitroge	n in NH₃ is:		2		20	(MTN 07)
	(a)	<u>14</u> × 100	(b)	1 4 × 100	(c)	<u> </u>	(d)	<u>20</u> × 1	L00
		34		17		17	1	34	
23.	NH ₃ I	ourns in O ₂ acc	ording	to the following	reaction:	1.8			(MTN 07)
		4NH _{3(g)} + 30	0 _{2(g)} =	<u> </u>	2 O (g)	101			
	(a)	Its show that	1 mole o	of NH ₃ will produce	e 1/2 moles of N	12			
	(b)	1 mole of NH	3 will pro	duces 6 mole of N		2/			
	(c)	For the comp	lete reac	tion 2 moles of NI	H₃ and 20 g of	O ₂ are required			
	(d)	Fr the comple	ete reacti	on, 2 moles of NH	l₃ and 40 g of 0	O ₂ are required			
24.	Mole	cular formula	is equal	to:					(MTN 09)
	(a)	$n \times empirical$	formula		(b)	n × compour	nd formul	а	
	(c)	$n \times atomic fo$	rmula	6	(d)	n × structura	al formula		
25.	The r	number of ato	ms pres	ent in 0.5 moles	of Na is:				(MTN 09)
	(a)	1.0 × 10 ²³	(b)	6.02×10^{23}	(c)	2.04×10^{23}	(d)	3.01 ×	10 ²³
26.	The a	atomicity of NI	l₃is:	JL	uuu	Jali	(MT	N, DGK 0	8, BWP 11)
	(a)	One	(b)	Two	(c)	Three	(d)	Four	
27.	Wate	er absorber us	ed in co	mbustion analys	sis is:				(MTN 09)
	(a)	50% KOH	(b)	50% NaOH	(c)	Lime water	(d)	Mg (Cl	O4)2
28.	The r	number of isot	opes of	oxygen is: 🚬	LCI			(В	WP 08, 09)
	(a)	One	(b)	Two 🥑	(c)	Four	(d)	Three	
29.	A lim	iting reactant	is that o	one which:					(BWP 10)
	(a)	Gives least nu	umber of	moles of product	(b)	Gives greate	est numbe	er of mole	s of product
	(c)	Is left behind	after co	mpletion of reaction	on (d)	Is most costly	v substance	es as comp	pared to others
30.	Atom	ns of which one	e of the	following eleme	ent have inde	ependent exist	ence:		(BWP 10)
	(a)	Flourine	(b)	krypton	(c)	Oxygen	(d)	Nitroge	en
31.	Dem	pster's mass s	pectrom	neter was desigr	ned for the id	lentification o	f isotope	es of the	elements
	whic	h were availab	le in:						(DGK 08)
					2				
					≺				

	(a)	Gaseous state	(b)	Liquid state	(c)	Solid state	(d)	Plasma s	state
32.	One of	f the substance	es is use	ed to absorb CO2 gas	in comb	ustion analysis	s which	is that s	ubstance:
	(a)	50% KOH	(b)	Al ₂ O ₃	(c)	Mg(ClO ₄) ₂	(d)	SiO ₂	(DGK 10)

PASS[®]Education system

www.passpk.com

33.	Number of molecules in one dm ³ of H ₂ 0 is close to:											LHR 13, DGK 10)				
	(a)	6.02	2 × 10 ²	³ (b)	18 × 6.0	22 ×10) ²³	(c)	55	.5 × 6.0)22 × 1	0 ²³	(d)	¹⁸ × 24	10 ²³
34.	The v	olume	occuj	pied by	/ 32 g	of O ₂ a	t S.T.	P is:							(DGK	(11)
	(a)	22.4	14 dm ³	(b) 2	2.241 dı	m ³		(c)	22	4.414 d	lm³	(d)	0.224	dm³	
35.	Silve	r has is	sotope	es:											(LHR	10)
	(a)	9		(b)	16	_		(c)	17			(d)	18		
36.	The n	umbe	r of m	olecule	es in c	one gra	m ato	m of C	CO2 is:						(GRV	V 10)
	(a)	6.02	×10 ²³	(b)	6.02×10)22		(c)	6.0)2×10 ²⁷	7	(d)	6.02×	10 ²⁴	
37.	Mass	of ele	ctron i	is: 🔰				_	-) \				(LHR	11)
	(a)	9.10	95×10 ³	³¹ kg	(b) 9	9 <mark>.10</mark> 95×	¹⁰⁻³¹ k	g	(c)	9.1	.095×1	0 ⁻²⁷ kg	(d)	9.1095	5×10 ⁻³¹	g
38.	The n	umbe	r of m	oles of	⁵ CO ₂ v	which c	ontair	n 8.0 g	ram o	f oxyg	en is:			(LHR, G	RW 12	, 14)
	(a)	0.25		(b) (0.50	-		(c)	1.0)		(d)	1.50		
39.	How	many	isotop	es are	prese	ent in p	alladi	um?		$ \rangle$					(LHR	13)
	(a)	Four		(b)	Five			(c)	Six	-		(d)	Seven		
40.	The c	hemic	al ana	lysis iı	n whic	ch all tl	he ele	ments	presei	nt in a	comp	ound a	are ide	entified	l: (FSD	10)
	(a)	Qua	antitati	ve anal	ysis				(b)) Qu	alitativ	e analy	sis			
	(c)	Grav	imetric	analysi	is	1			(d)	no	ne of th	nese				
41.	Whic	h of th	e follo	wing e	eleme	nt can	exist i	in mor	oaton	nic for	m	1			(MTN	11)
	(a)	Oxyg	jen	(b) 🤇	Chlorine			(c)	Nit	rogen		(d)	Helium	1	
						60	7 .		01	12	1					
						-	ANS	WER	KEY	-						
	1	2	3	Δ	5	6	7	8	0	10	11	12	13	14	15	
		 b		h T			2	h	b	10		d L	b h	2	d d	
	16	17	10 10	10	20	21	2	23	2/	25	26	77	28	a 20	30	
		1/	20	19	20	4	<u>دد</u> h	23	27	23	20	Z	20	29	50	
		L L	a		L L	u	U	a	a	u	u	u	u	a	U	

system

38

а

39

С

40

b

41 d

32

а

31

С

33

С

34

а

35

b

36

а

37

b

Chapter #02

1.	In pap	per chromatography, the point to which the	solvent	t rises to maximum e	extent is called:
	(a) .	Eluent	(b)	Chromatogram	(GRW 07)
	(c)	Solvent front	(d)	Base line	
2.	Which	one of the following substances is used as	decolor	izing agent: (G	RW 08, 09,LHR 14)
	(a)	Animal charcoal	(b)	Conc. H ₂ SO ₄	
	(c)	CaCl ₂	(d)	Silica gel	
3.	The io	dine present in water can be separated by v	which o	ne of the following t	echniques: (GRW 08)
	(a)	Sublimation	(b)	Chromatography	
	(c)	Filtration	(d)	Solvent extraction	
4.	Chron	natography in which the stationary phase is	; lìquid i	s called:	(LHR 07)
	(a)	Adsorption chromatography	(b)	Partition chromatogra	phy
	(c)	Column chromatography	(d)	None of these	. ,
5.	Rate o	of filtration can be increased using:			(LHR 08, 11)
	(a)	Desiccator	(b)	Chromatographic tank	ζ
	(c)	Cold finger	(d)	Suction flask	
6.	A com	ponent having small value of K (distribution	n coeffi	cient) mostly remain	s in: (LHR 08)
	(a)	Stationary phase	(b)	Mobile phase	
	(c)	Chromatographic tank	(d)	None of these	
7.	Direct	conversion of solid into vapors is called:)	(GRW 09)
	(a)	Crystallization	(b)	Sublimation	
	(c)	Distribution	(d)	Vaporization	
8.	Which	of the following is purified by sublimation:			(LHR 09)
	(a)	Naphthalene	(b)	Benzoic acid	
	(c)	Ammonium chloride	(d)	All of these	
9.	Substa	ance that does not show the process of subl	limation	is:	(GRW 11)
	(a)	K ₂ Cr ₂ O ₇	(b)	Iodine	
	(c)	Naphthalene	(d)	NH4CI	
10.	Solver	nt extraction is an equilibrium process and i	is contro	olled by:	
			SD 07, 0	9, SGD 09, 11, RWP 08	, 11, LHR 10, GRW 14)
	(a)	Distribution law	(b)	The amount of solven	t used
	(c)	Law of mass action	(d)	The amount of solute	
11.	Which	is not used as drying agent in vacuum desi	iccator i	S:	(LHR 14)
	(a)	P2O5	(b)	CaCl ₂	
	(c)	MgCl ₂	(d)	Silica gel	
12.	Which	chemical do not undergo sublimation?			(MTN 07, FSD 08)
	(a)	KMnO ₄	(b)	Naphthalene	
	(c)	NH4Cl	(d)	Iodine	
13.	Iodine	e dissolves in water in the presence of KI du	le to foi	rmation of wh <u>ich one</u>	e of the following
	specie	es?		(BWP 1	1, FSD 10, LHR 13)
	(a)	I ₂	(b)	I-	
	(c)	I ₃ -	(d)	I4	
14.	The m	ost common solvent used in solvent extract	tion is:		(FSD 11)
	(a)	Acetone	(b)	Ethanol	
	(c)	Rectified spirit	(d)	Diethyl ether	
15.	Which	of the following substance shows the prop	erty of	sublimation?	(SGD 10, BWP 08)
	(a)	Sodium chloride	(b)	Ammonium chloride	
	(c)	Copper chloride	(d)	Acetic acid	

6

16.	In pap	per chromatography, the mobile phase is u	sually:		(RWP 08)
	(a)	Liquid ammonia	(b)	Water	
	(c)	Organic liquid	(d)	None of these	
17.	The co	omparative rate at which the solutes move	in pap	er chromatography depend	s on:
	(-)	The size of paper	(h)	(RWP 09, MIN 08, LHR 1.	2, GRW 12, 1)
	(a)	Tomporature of the experiment	(U)	Rt values of solutes	topk used
10	(C) When	het saturated solution is cooled yory clow	(u) hywo a		
18.	when	not saturated solution is cooled very slow	ly we g		VP 10, DGK 11)
	(2)	Medium cize crystals	(b)	l arge size crystals	
	(a)	Premature crystallization of the substance	(d)	No crystals	
10	Chrom	atography is the process which involves t	ho distr	ribution of a solute betwee	(MTN 07)
19.	(a)	Two mobile phases	(h)	A stationary phase and a mo	bile phase
	(a)	Two stationary and two mobile phases	(d)	Two stationary phases	
20.	In CCl	solvent. I2 shows:	(4)	Two stationary phases	(MTN 07)
	(a)	Blue colour	(b)	Brown colour	(1111-07-)
	(α)	Pink colour	(d)	Purple colour	
21.	The d	rving Agents used in vacuum desiccator ar	e:	· · · · · · · · · · · · · · · · · · ·	(MTN 08)
	(a)	CaCl ₂	(b)	Silica gel	
	(c)	Both a and b	(d)	None	
22.	The ra	itio of the solute in organic phase to that i	n aqueo	ous phase is called: (MIIN	08, 10, BWP 08)
	(a)	Rate constant	(b)	Equilibrium constant	
	(c)	Distribution coefficient	(d)	Arrhenius constant	
23.	When	an organic compound which is volatile or	therma	Ily unstable it is separated	by: (MTN 09)
	(a)	Crystallization	(b)	Sublimation	
	(c)	Solvent extraction	(d)	Chromatography	
24.	Iodine	e can be purified by process of:			(MTN 09)
	(a)	Evaporation	(b)	Saponification	
	(c)	Sublimation	(d)	Crystallization	
25.	Insolu	ble particles can be separated from a liqui	d by:		(MTN 11)
	(a)	Sublimation	(b)	Solvent extraction	
	(c)	Filtration	(d)	Crystallization	
26.	Repea	ted extraction using small portion of solve	ent are i	more:	(DGK 08)
	(a)	Accurate	(b)	Efficient	
	(c)	Slow	(d)	Rapid	
27.	The ch	romatography in which stationary phase i	s liquid	l is called:	(DGK 08)
	(a)	Partition chromatography	(b)	Column chromatography	
	(c)	Adsorption chromatography	(d)	All of these	
28.	In chr	omatography the stationary phase:			iK 10, FSD 08)
	(a)	Is a solid	(b)	Is a liquid	
	(C)	May be liquid or gas	(d)	May be solid or liquid	
29.	The di	rying agents used in vacuum desiccator are	:		(LHR 12)
	(a)	Agu	(D)		
	(C)		(a)	AICI3	
30.	Gooch	Crucible is made of:	(1-)	A - b - c + c -	(LHR 14)
	(a)	Clay	(D)	ASDESTOS	
21	(C)		(a)	Iron	
31.	Solver	It extraction is a process:	(k)	Findath averain	(LHR 14)
	(a)		(D)		
22	(C)	Equilibrium	(a)	Non-equilibrium	
52.			(h)	Sublimation	
	(a)	Ciyslall/2dl/01	(D)	Sublimation	
		שווילווג לאנו מכנוטוו	(u)	Спонаюдгарну	

ANSWER KEY

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
С	а	d	b	d	а	b	d	а	а	С	а	с	d	b
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
C	b	b	b	d	С	С	C	С	С	b	а	d	C	C
31	32													
C	d													
													\mathcal{O}	
												K	$\mathbf{\bigcirc}$	
							67							
						C								
						/								
		C												
/														

www.passpk.com

Chapter #03

1.	The id	eal gas consta	nt R, wl	hen exp	ressed in	dm ³ atm. mo	ol ⁻¹ .K ⁻¹ unit	s have a v	alue of:	(GRW 05)
	(a)	0.0821	(b)	1.0821		(c)	82.21	(d)	82.1	
2.	Calorie	e is equivalent	to:		-					(GRW 05)
_	(a)	0.4184 J	(b)	41.84 J		(c)	4.184 J	(d)	10.418	j
3	The de	ensity of a gas	can be	determi	ned by fo	rmula:	DMD		(GRW	06, FSD 11) -
	(a)	$d = \frac{PM}{RT}$	(b)	$d = \frac{RT}{PM}$		(c)	d = T	(d)	$d = \frac{PM}{R}$	L
4.	Which	gas has highe	st diffus	sion rate	e?	~ ((LHR 06)
_	(a)	SO ₂	(b)	Cl ₂		(c)	NH ₃	(d)	CO ₂	
5.	Mathe	matically Boyl	e's law	is show	n as:		<u>.</u>	1		(LHR 07)
	(a)	PT = K	(b)	VT = K		(c)	$\frac{P}{T} = K$	(d)	PV = K	
6.	Absolu	ite zero is equi	al to:	1				1		(GRW 07)
•	(a)	273°C	(b)	-273℃		(c)	0°C	(d)	273 K	
7.	If the	values of 'a' a	nd `b' in	Van de	r Waal's	equation are	close to ze	ero for a ga	as, then	the gasis:
	(a)	Ideal (b)	Non-ide	eal	(c) h	ighly polar	(d) Liqu	uefied easily	/	(LHR 08)
8.	The co	onstant factor i	in Charl	es's law	is:			/		(GRW 08)
-	(a)	Volume	(b)	tempera	ature	(c)	Pressure	(d)	all of th	lese
9.	Which	gas will diffus	se more	rapidly:			1 1			(GRW 09)
	(a)	CO ₂	(b)	NH ₃		(c)	HCI	(d)	SO ₂	
10.	Norma	ıl human body	temper	ature is	710	U CY	· /			(LHR 11)
	(a)	37°C	(b)	98.6°C	' I U	(c)	37ºF	(d)	273 K	
11.	Partia	pressure of o	xygen iı	n humai	n lungs ir	torr is:	(MTN 07,	DGK 08, G	RW 11, 0	8, LHR 12)
	(a)	161	(b)	116		(C)	159	(d)	760	
12.	Ine m	olar volume of			m at:		000 and 2 a	(Lil)	R, SGD 1	D, RWP 09)
12	(d) The or	5.1.P dor of rate of ((D) diffucio			(0) and (0)		itm (a)	273K	
15.				n or yas	c_{5} n_{13}		$\mathbf{V}_2 \mathbf{I}_3 \mathbf{I}_3$			
	(a)	$C_1 > SO_2 > C_2$	$D_2 > NH_3$	<u> </u>	_	(d)	$NH_3 > CO_2$	$> Cl_2 > SO_2$	<u>.</u>	
14.	Plasm	a is conductor	of elect	ricity:						8. FSD 09)
	(a)	Bad	(b)	Poor	EU	(c)	Good	(d)	None	
15.	To cal	culate the pres	sure an	d volun	ne of a re	al gas under	the non-id	eal condit	ions, alt	ernate
		calace cite piec								(FSD 10)
	kinetio	equation has	been de	evelope	d. This is	known as:				
	kinetio (a)	c equation has General gas eq	been de	evelope	d. This is	known as: (b)	Arrhenius e	quation		
	kinetio (a) (c)	equation has General gas eq Clausius Clapey	been de uation ron equa	evelope ation	d. This is	known as: (b) (d)	Arrhenius e van der Wa	quation al's equatio	n	
16.	kinetio (a) (c) If abso	c equation has General gas eq Clausius Clapey Diute temperat	been de uation ron equa	evelope ation a gas is	d. This is	known as: (b) (d) and pressure	Arrhenius e van der Wa is <u>reduced</u>	quation al's equatio I to one ha	n If, the v	olume of
16.	kinetic (a) (c) If abso the ga	c equation has General gas eq Clausius Clapey Dlute temperat s will:	been do uation vron equa ture of a	evelope ation a gas is	d. This is	known as: (b) (d) and pressure	Arrhenius e van der Wa is reduced	quation al's equatio I to one ha , RWP 10, N	n if, the v 1TN, BW	olume of ?, DGK 11)
16.	kinetic (a) (c) If abso the ga (a)	cequation has General gas eq Clausius Clapey Diute temperat s will: Remain unchar	been do uation ron equa ture of a	evelope ation a gas is a	d. This is	known as: (b) (d) and pressure (b)	Arrhenius e van der Wa is reduced	quation al's equatio I to one ha , RWP 10, N ur times	n If, the v 1TN, BW	olume of P, DGK 11)
16.	kinetic (a) (c) If abso the ga (a) (c)	c equation has General gas eq Clausius Clapey olute temperat s will: Remain unchar Reduce to 1/4	been do uation ron equa ture of a	evelope ation a gas is	d. This is	known as: (b) (d) and pressure (b) (d)	Arrhenius e van der Wa is reduced (SGD 09 Increase for Be doubled	quation al's equatio I to one ha , RWP 10, N ur times	n lf, the v 1TN, BW	olume of P, DGK 11)
16. 17.	kinetic (a) (c) If abso the ga (a) (c) Pressu	c equation has General gas eq Clausius Clapey olute temperat s will: Remain unchar Reduce to ¼ Ire remaining of	been de uation vron equa ture of a nged	evelope ation a gas is t, at wh	d. This is doubled	known as: (b) (d) and pressure (b) (d) erature the v	Arrhenius e van der Wa is reduced (SGD 09 Increase fo Be doubled volume of a	quation al's equatio I to one ha , RWP 10, N ur times gas will b	n If, the v 4TN, BW 9ecome 1	olume of P, DGK 11) twice of
16. 17.	kinetic (a) (c) If abso the ga (a) (c) Pressu what i	c equation has General gas eq Clausius Clapey olute temperat s will: Remain unchar Reduce to ¼ tre remaining of t is at 0°C.	been de uation vron equa ture of a nged constan	evelope ation a gas is t, at wh	doubled	known as: (b) (d) and pressure (b) (d) erature the v	Arrhenius e van der Wa is reduced (SGD 09 Increase fo Be doubled volume of a	quation al's equatio I to one ha , RWP 10, N ur times n gas will b	n lf, the v ITN, BW Decome	olume of P, DGK 11) twice of (RWP 08)
16. 17.	kinetic (a) (c) If abso the ga (a) (c) Pressu what i (a) One to	c equation has General gas eq Clausius Clapey olute temperat s will: Remain unchan Reduce to ¼ Ire remaining of t is at 0°C. 546°C	been de uation vron equa ture of a nged constan (b)	evelope ation a gas is t, at wh 200°C	doubled	known as: (b) (d) and pressure (b) (d) erature the v (c)	Arrhenius e van der Wa is reduced (SGD 09 Increase for Be doubled volume of a	quation al's equatio I to one ha , RWP 10, N ur times n gas will b (d)	n If, the v ITN, BW Decome 273 K	olume of P, DGK 11) twice of (RWP 08)

www.passpk.com

19.	S.I ur	nit of pressure	e is:							(RWP 09)	
	(a)	Torr	(b)	mm Hg		(c)	Nm ⁻²	(d)	Pound i	nch ⁻²	
20.	The s	preading of fr	agrance	of scent in	air is due t	0:			(SWL 1	5, RWP 11)	
	(a)	Effusion	(b)	Diffusion		(c)	Osmosis	(d)	Density		
21.	The v	alue of R (in I	Nm K ⁻¹ n	nol ⁻¹) is:						(MTN 08)	
	(a)	8.214	(b)	8.314		(c)	0.0321	(d)	62.4		
22.	Whic	h of the follow	ving will	have the sa	ame numbe	er of mo	oles at S.T.P?			(MTN 08)	
	(a)	280 cm ³ of C	O_2 and 28	$30 \text{ cm}^3 \text{ of } N_2 C$)	(b)	11.2 dm ³ of (D_2 and 32	g of O2		
	(c)	44 g CO ₂ and	l 11.2 dm	³ of CO		(d)	28.0g N ₂ and	5.6 g O ₂	ofoxygen		
23.	The a	bsolute zero i	is:							(MTN 09)	
	(a)	Attainable				(b)	May be attair	nable			
	(c)	Un attainable	in gaseo	us state		(d)	My not be att	ainable			
24.	Stand	lard temperat	ure:				\ \			(MTN 09)	
	(a)	0°C	(b)	75°C		(c)	273℃	(d)	100°C		
25.	The c	olour of NO ₂ g	jas is:			8				(BWP 08)	
	(a)	Yellow	(b)	Green		(c)	Brown	(d)	Blue		
26.	Pilots	feel uncomfo	ortable b	reathing in	unpressuri	zed cat	oins:	1	_	(BWP 08)	
	(a)	Due to high p	pressure o	of CO ₂	1	(b)	Due to low p	essure of	f O ₂		
	(C)	Due to fatigu	e		-	(d)	Due to low pi	ressure of	r CO ₂		
27.	Plasm	has are found	in every	thing from	sun to:		<u> </u>			(DGK 08)	
	(a)	Atoms	(b)	Molecules		(C)	Electrons	(d)	Quarks		
28.	whick	n gas will diffi	use mor	e rapidly an	nong the fo	lowing		(4)	NUL I	(DGK 10)	
	(a)	IN2	(D)			(C)	CO	(a)	INH3		
29.	whick	n gas diffuses	most ra	pidly?	-	1			~~~	(LHR 06)	
	(a)	HCI	(b)	NH ₃	-	(C)	502	(d)	CO_2		
				· · ·		61					
ANSWER KEY											

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
а	С	а	С	d	b	а	С	b	а	С	b	b	С	d
16	17	18	19	20	21	22	23	24	25	26	27	28	29	
b	С	С	С	b	b	а	С	а	С	b	d	В	b	
		P/		55)	E		U	62	t	0	n		1

system

www.passpk.com

Chapter #04

1.	Which	one is the exa	ample of	cubic crystals?				
	(a)	Graphite	(b) 🦯	Sugar	(c)	Borax	(d)	Diamond
2.	The bo	iling point of	the halo	gens:				
	(a)	Increase down	the grou	p	(b)	Decrease dowr	the gro	up
	(c)	Remains consta	ant		(d)	can't be predic	ted	
3.	Vapor	pressure of a	liquid in	a closed container d	epends	upon:		
	(a)	Surface area of	f containe	er	(b)	Temperature		
	(c)	Amount of liqui	id		(d)	All of these		
4.	A cryst	al system in v	vhich all	the axes and angles	are une	equal is called:		
	(a)	Tetragonal syst	tem	1 1	(b)	Mono <mark>clinic</mark> syst	em	
	(c)	Triclinic system			(d)	Cubic system		
5.	At Mur	ree hills wate	r boils a	ti		1 1		
	(a)	98°C	(b)	100°C	(c)	0°C	(d)	50°C
6.	Coordi	nation numbe	r of Na ⁺	ion in NaCl is:				
	(a)	One	(b)	Two	(c)	Four	(d)	Six
7.	Water	may boil at 12	20°C wh	en external pressure	is:	/		(LHR 14)
	(a)	369 torr	(b)	700 torr	(C)	760 torr	(d)	1489 torr
8.	Crysta	ls formed due	to Lond	on forces of interact	ion are:	· /		
	(a)	Ionic	(b)	Covalent	(c)	Molecular	(d)	Metallic
9.	Forces	which are pre	eset betv	ween ions and water	molecu	les are		
	(a)	Dipole-induced	dipole fo	orces	(b)	Dipole-dipole for	orces	
	(c)	Ion dipole force	es		(d)	London dispers	ion force	es
10.	How m	any allotropio	: forms a	are present in carbor	ı?			
	(a)	Two	(b)	Three	(c)	Four	(d)	Five
11.	Transi	tion temperat	ure of ti	n is				
	(a)	95.5°C	(b)	13.2°C	(c)	0°C	(d)	128.5°C
12.	The cr	stal of diamo	nd is:			ati		
	(a)	Ionic	(b)	Covalent	(c)	Molecular	(d)	Metallic
13.	Liquid	hydrocarbon i	is:					
	(a)	Methane	(b)	Propane	(c)	Ethane	(d)	Hexane
14.	The ex	ample of hexa	agonal sy	ystem is:	.,			(LHR 11)
	(a)	Sulphur	(b)	NaCl	(c)	Graphite	(d)	Diamond
15.	Hydro	gen bonding is	s stronge	est in:				
	(a)	HI	(b)	HBr 🥑	(c)	HCI	(d)	HF
16.	Àllotro	py is the prop	erty of:		()			(GRW 11)
	(a)	Element	(b)	Compound	(c)	Mixture	(d)	Ions
17.	Ìce oc	cupies more s	pace tha	n liguid water.	()			(LHR 10)
	(a)	9%	(b)	10%	(c)	11%	(d)	12%
18.	Struct	ure of ice is:	(-)		(-)		(-)	
	(a)	Tetrahedral	(b)	Octahedral	(c)	Cubic	(d)	Triclinic
19.	In orth	orhombic crv	stal, the	unit cell dimensions	are:			
	(a)	$a = b \neq c \alpha =$	$\beta = \gamma = 9$	90°	(b)	$a \neq b \neq c \alpha = f$	$\beta = \gamma = 9$	90°
	(\mathbf{c})	$a \neq b \neq c \alpha = 0$	β = ν ≠ 9	0°	(d)	$a \neq b \neq c \alpha = 0$	$\beta = \gamma \neq 9$	90°
20.	Londo	n dispersion fo	orces are	e significant for:	(4)		, <u>, -</u>	
	(a)	Polar molecule	s (h)	Ionic solids	(c)	Metals	(d)	Non polar molecules
	(u)		5 (6)			i ictuis	(u)	
		-		11	- -	<i>(</i>)		
		Prepai	red By:	PASS Education	Systen	n (Team)		
		For Or	line Er	ntry Test Preparat	tion: 0	304-066600	0	
		For Ev	ening (Coaching: 0310-4	74520	4		

www.passpk.com

		_						
21.	Which	substance sho	ows anis	otropic behavior i	n electrica	l conductivity	?	-
~~	(a)	Diamond	(b)	Graphite	(c)	KCI	(d)	Ice
22.	The bo	oiling points of	higher	alkanes are greate	er than tho	ose of lower all	kanes d	ue to the reasons
	that:		I	- t - u - u - t - u - u - t - u - u - t - u				
	(a)	Higher alkanes	nave gre	ater number of aton	ns			
	(D)		ty of nigr	ier alkanes is greate	r			
	(C)	Higher alkanes	nave zig	zag structures				
22	(a)	Higner aikanes	nave gre	ater nydrogen bond	ing			
23.	water	nas maximum		at:		10000		1000
~	(a)	4°C	(b)		(c)	100°C	(d)	10°C
24.	K2504		e isomor	phic solids and ex		- ·		-
	(a)		(b)	Orthornombic form	(C)	I rigonal form	(a)	Tetragonal
25.	The tra	ansition tempe	erature o	of KNO ₃ is:		120.00		22.0200
26	(a)	13.2%	(D)	95.5°C	(C)	128 %	(a)	32.02°C
26.			ula una	er reduced pressu	re is called	l: Maanuna diatilla	+:	
	(a)	Destructive dist	lillation		(D)	Vacuum distilla	tion	
77	(C) The ch	Fractional disti		rido ici	(a)	Simple distillat	on	
27.	(2)	Body contored		in lue is:	(b)	Eaco contorod	cubo	
	(d) (c)	Simple cube	cube		(d)	Nono	cube	
20		simple cube	procon	t botwoon the ion	(u) c and the y	None water molecule	o aro k	
20.	(a)	Dipolo inducod	forcos	t between the ion	s and the v	Jon-dingle force		nown as:
	(a)	Dipole-dipole fr	IUICES		(d)	London dispers	cs sion force	ec
29		crystalline su	hstance	and has	(u)	London dispers		65
201	(a)	Ionic crystals	botanec		(h)	Metallic crystal	\$	
	(\mathbf{c})	Covalent crysta	ls	612	(d)	Molecular crystal	s	
30.	Which	of the followi	na liauio	l has highest boili	na point?			
	(a)	HCI	(b)	HBr	(c)	H ₂ O	(d)	Br ₂
31.	The nu	imber of Na ⁺ io	ons which	ch surround each (Cl ⁻ ion in th	ne NaCl crystal	is:	
	(a)	4	(b)	6	(c)	8	(d)	12
32.	Liquid	s evaporate at	everv to	emperature. When	1 the temp	erature becom	nes cons	stant for a liquid
	then:		/ -	-	·			
	(a)	Rate of evapora	ation is g	reater than the rate	of condensa	ation.		
	(b)	The rate of con	densatio	n is greater than the	rate of eva	poration.		
	(c)	The rate of con	densatio	n and evaporation be	ecomes equ	al		
	(d)	Depends upon	the natur	e of the liquid				
33.	Ionic s	olid don't con	duct the	electrical current	because:			
	(a)	Ions do not hav	ve transla	itory motion	(b)	Free electrons	are less	
	(c)	The coordination	on numbe	er of the ion is very h	nigh			
	(d)	Strong covalent	t bonds a	re present in their s	tructure			
34.	Amorp	hous means:	(1.)	SVGT	en		()	
~-	(a)	Ordered	(b)	Arranged	(c)	Shaped	(d)	Shapeless
35.	Polariz	ability is meas	sure of e	extent of distortion	n:	Custometic	(-1)	
20	(a)	Qualitative	(D)	Quantitative	(C)	Systematic	(a)	None of these
30.	Heat C	nange for one	mole of	a solid during cor			l ea: Whimeti	a b
	(a)	Molar heat of f	aporizatio	חר	(d)	Finite Construction	Sublimati	On
27	(C)		usion Ing door	not form a malac	(u)	Enunalpy chang	je	
57.			(b)	Graphito		Indino	(d)	Sugar
38	(a) Evanor	ration causes	(0)	Giapinte	(C)	Iouine	(u)	Sugai
50.		Cooling	(h)	Hosting	(c)	Boiling	(d)	irritation
30	(a) Diamo	nd and graphi	(U) to are e	ricauliy xample of:	(C)	Donnig	(u)	Intation
59.	(a)	Isomorphism	(h)	Polymorphism	(c)	Isomerism	(d)	Allotropy
40	Dinole	-induced dipol	(U) e forces			1301110113111	(4)	
- v .		London dispore	ion force		(h)	Dehve forces		
	(9)			10		Debye forces		
		Drames	ad D.	DACC Educate	n Curta			
		Prepar	eu by:	FASS EQUCATIO	ni systen	n (ream)		
		For On	line Er	itry Test Prepa	ration: 0	304-066600	0	

For Evening Coaching: 0310-4745204

	www.passpk.com												
	(c)	Huckel forces			(d)	Electr	ostatic forces						
41.	The s	size of diamete	r of double h	elix of DI	NA is:								
	(a)	18-20 Å (b)	20-30 Å	(c)	1-10 Å	(d)	25-30 Å						

PASS[®]Education system

PASS Entry Test Series

(ECAT, NUST-NET, NTS-NAT, COMSATS, FAST, PIEAS, GIKI, UHS, Army Medical, PIMS)

www.passpk.com

42.	Which statement is incorrect about tetragonal crystal system?											
	(a)	a = b ≠ c	(b)	a≠b=c	(c)	$\alpha = \beta = \gamma = 90$	° (d)	None of these				
43.	Cryst	al system sho	own by d	iamond is:								
	(a)	Cubic	(b)	Tetragonal	(c)	Monoclinic	(d)	Hexagonal				
44.	The s	trongest acid	among	halogen acids is:								
	(a)	HF	(b)	HCI	(c)	HBr	(d)	HI				
45.	The n	umber of Cl ⁻	ions per	unit cell of NaCl is	5:							
	(a)	8	(b)	6	(c)	4	(d)	2				
46.	How	much more s	pace is o	ccupied by water	on freezing:							
	(a)	9%	(b)	8%	(c)	7%	(d)	6%				
47.	Boilin	ig point of H ₂	O at Mou	i <mark>nt E</mark> verest would	be:							
	(a)	98°C	(b)	100°C	(c)	101°C	(d)	69°C				
48.	Allotr	opy is the pro	operty of									
	(a)	Compound	(b)	Element	(c)	Atoms	(d)	Mixture				
49.	Hydro	ogen bonding	is maxir	num for:	1							
	(a)	Ethanol	(b)	Water	(c)	Benzene	(d)	Diethyl ether				
50.	The e	xistence of a	n elemer	nt in more than or	ne crystalline	forms:		(LHR 12, 13)				
	(a)	Allotropy	(b)	Isotropy	(c)	Isomorphism	(d)	Polymorphism				
51.	Dry io	ce (Solid CO ₂)	is <mark>an e</mark> x	ample of solid:				(LHR 14)				
	(a)	Covalent	(b)	Molecular	(c)	Ionic	(d)	Metallic				
52.	Glyce	rine decomp	oses at it	s:		1 ~ 1		(LHR 14)				
	(a)	Melting point	t (b)	Boiling point	(c)	Freezing point	(d)	Critical point				
53.	Whic	h one is the f	ollowing	is a pseudo solid:		101		(LHR, GRW 14)				
	(a)	CaF ₂	(b)	NaCl	(c)	Borax	(d)	Glass				
				61	1	3 /						
						- /						

ANSWER KEY

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
d	а	b	С	а	d	d	С	С	а	b	b	d	С	d
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
а	а	С	b	d	b	b	а	b	С	b	b	b	а	С
31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
b	С	а	d	b	C	b	а	d	b	а	b	а	d	С
46	47	48	49	50	51	52	53							
а	d	b	b	а	b	b	d							

system

www.passpk.com

Chapter #05

1.	Maxim	um number of e	electron	s in a subshell	is given by:			(LHR 0)5, 14)
	(a)	2 / + 1	(b)	2/-1	(c)	2(2 / + 1)	(d)	2 (2 / – 1)
2.	An orbi	tal can accomn	nodate	maximum elec	trons:		(L	HR 14, GR	W 06)
	(a)	10	(b)	14	(c)	6	(d)	2	
3.	How m	any times the r	nass of	neutron is gre	ater <mark>than</mark> that o	of electron?		(GR	RW 07)
	(a)	1480	(b)	2000	(c)	200	(d)	1840	
4.	Lyma	n Series is obta	nined w	hen electron in	n an atom jump	<mark>s fro</mark> m higher	energy	level to:	(GRW 07)
	(a)	Ground level	(b)	2 nd level	(c)	3 rd level	(d)	4 th level	
5.	When	6d orbital is co	omplete	e, the entering	electron goes i	nto: <u>(LHR 07, S</u>	GD 09, R	WP 10, MT	N, DGK 11)
_	(a)	7f	(b)	7s	(C)	7p	(d)	7d	
6.	Lyma	n series occur i	n:			1 . 1	<i>(</i>))	(SGD 1	0, LHR 07)
	(a)	Visible region	(b)	U.V. region	(c)	I.R. region	(d)	None of	these
7.	<u>e</u> va	lue for positive	rave is	maximum for				3 GRW 0	9 MTN 07
	m "							13, GIUN 0	<i>5,</i> PHN 07 j
	(a)	Hydrogen	(b)	Helium	(C)	Oxygen	(d)	Nitrogen	
8.	Accor	ding to Bohr's a	atomic	model, radius o	of second orbit	of hydrogen a	tom is:		LHR 08)
_	(a)	0.529 Å	(b)	2.116 Å	(c)	4.0 Å	(d)	5.0 Å	
9.	Lines	of Paschen ser	ies are	produced whe	n electrons jun	np from highe	rorbits	to	orbit.
	(a)	1 st	(b)	2 nd	(c)	3ra	(d)	4 th	GRW 08)
10.	The e	lectronic config	guration	n of an atom is	1s ² ,2s ² ,2p ⁴ . T	he number of	unpaire	d electro	ns in this
	atom	is:			11 2.		<i>.</i>		GRW 08)
	(a)	0	(b)	2	(C)	4	(d)	6	
11.	Nega	tive charge on o	cathode	e rays we estab	olished by:		<i>(</i>))		GRW 09)
	(a)	William Crook	(b)	J. Perrin	(C)	R.A Millikan	(d)	Hittrof	
12.	An or	bital which is s	pherica	l and symmetr	ical is:		<i>.</i>	e	(LHR 09)
	(a)	s-orbital	(b)	p-orbital	(C)	d-orbital	(d)	f-orbital	
13.	Angst	rom is the unit	: of:	(R)	(-)		(-1)		LHR 09)
	(a)	time	(b)	length	(C)	mass	(a)	frequenc	у
14.	Mass	of electron is:	C			A 4005 40.21			LHR 11)
	(a)	9.1095×10^{31} k	(g		(b)	9.1095×10^{-31}	кд		
	(C)	9.1095×10^{-27}	kg		(d)	9.1095×10^{-51}	g		
15.	Neutr	on was discove	ered by:		(-)	Duth suffered	(-1)		LHR 11)
	(a)	Chadwick	(D)	C.D. Anderson	(C)	Rutherford	(a)	Goldstein	ı
16.	Bamb	ardment of α -p	Darticles	s on Beryllium	(Be) atom, em	ts neutron an	a this p	rocess is	called:
	(a)		TIVITY	SVS	(D)	Artificial radioa	ctivity		GRW 11)
	(C)	Pauli s exclusio	n princip	le	(a)	Hund's rule			
17.	Baimo	er series in nya	rogen s	pectrum lies ir	i the region:	Turfue used	(-)	(FSD 07,	GRW 11)
10	(a) Th a u		(D)	VISIDIE	(C)	Infrared	(a)	MICroway	
18.				INT IS: $(-27)^{-27}$		C C 2 10- ²¹ 1 -	(-1)	C C 2 1 C	(LHK 10)
10	(a)	J.S J.S	(D)	0.02 × 10 ⁻²⁷ J.S	(C)	J.S × 10 ⁻²¹ J.S	(a)	0.02 × 10	/ ⁵⁴ J.S
19.	Prope		are:	Mayo number		Frequency	(4)	A 11	(FSD 09)
20	(d)		(U)	wave number	(C)	rrequency	(u)	All	
20.	WIIC	equation corr	ectiy re	presents the H	leisenberg's un		liple		(FSD 10)
	(a)	$\Delta x \Delta P = \frac{h}{4}$	(b)	$\Delta x \Delta P > \frac{h}{4}$	(c)	$\Delta x \Delta P \geq \frac{h}{4}$	(d)	$\Delta x \Delta P \leq \frac{1}{2}$	<u>n</u>
	()	4π	(-)	4π	(-)	$ 4\pi$	()		Hπ

PASS Entry Test Series

(ECAT, NUST-NET, NTS-NAT, COMSATS, FAST, PIEAS, GIKI, UHS, Army Medical, PIMS)

			WW	vw.pa	isspk.co	m				
21.	65 Cu -	$+^{1}n \longrightarrow ^{66}$	Cu + "	'x" What	is ``x″					
	29	0 29)					(LHR 14	4, BWP 1	1, FSD 10)
	(a)	Electrons	(b)	Protons	•	(c)	Beta rays	(d)	Gamma	ray
22.	The nu	mber of neutro	ons pre	sent in $\frac{3}{1}$	9 9 K is:			(MTN (07, DGK	10, FSD 11)
	(a)	39	(b)	18	-	(c)	20	(d)	19	
23.	When 4	4s orbital is co	mplete,	the elec	ctron goes in	to:				(SGD 10)
	(a)	4р	(b)	3d		(c)	4d	(d)	4f	
24.	The lin	niting line of Ba	almer s	eries lies	in the regio	n:		(I)		(SGD 11)
25	(a)	Visible	(b)	U.V.		(C)	Near I.R	(d)	Far I.R	
25.	wnicn	of the followin		als is au	nd bell snap		d orbital	(d)	forbital	(RWP 08)
26	(d) Eree no	s-orbital	(D) into a n	p-orbital	ith the emice	(C)	n electron and	(u) a	I-OIDILAI	
20.	(a)	Positron	(b)	Neutrino			Beta Particle	a (d)	Helium	nucleus
27.	The ma	ass of an oxyge	en atom	is:		(0)		(u)	ricitatii	(RWP 10)
	(a)	2.657×10^{-23} g	(b)	2.657 × 1	L0 ²³ a	(c)	16 g	(d)	32 a	
28.	The ele	ectrons occupy	ing an o	orbital a	re distinguis	ned by:			- 5	(MTN 07)
	(a)	Magnetic quanti	um numl	ber 🧹		(b)	Principal quant	um numt	ber	
	(c)	Azimuthal quant	t <mark>um n</mark> um	nber		(d)	Spin quantum r	number		
29.	The ma	ass of proton is	s (in kg)):						(MTN 08)
	(a)	$+1.6 \times 10^{-19}$	(b)	-1.6×10^{-1})-19	(c)	1.672×10^{-27}	(d)	9.1 × 10)-31
30.	Bohr's	model of atom	is cont	radicted	by:					(MTN 08)
	(a)	Photo electric el	rect			(D)	Pauli's exclusion	n princip	le	
31.	(C) K-serie	S X-Rays have	wavele	nath :		(u)	Aurbau principi	E		(MTN 09)
01.	(a)	Longer	(b)	Smaller	1000	(c)	Same	(d)	Differer	t
32.	What i	s the value of ((n + /) f	or the 3	s sub-shell?	2		(-)		(MTN 09)
	(a)	2	(b)	1	U III	(c)	5	(d)	3	
33.	Cathoo	le rays consist	of:	Ductors			N		Nuclear	(MTN 09)
34	(a) The d-	Electrons	(D)	Protons		(C)	Neutrons	(a)	NUCLEOF	
54.	(a)	5-orbitals	(b)	6-orbitals	5	(c)	7-orbitals	(d)	10-orbit	als
35.	Orbita	s having same	energy	are call	ed:	(0)		(4)	(MTN 1	0, BWP 09)
	(a)	Hybrid orbitals	(b)	Valence of	orbitals	(c)	d-orbitals	(d)	Degene	r <u>ate orbita</u> ls
36.	Positiv	e rays were di	scovere	d by:	Ealı					(MTN 11)
37	(d) Mass o	J.J. momson	(D)		a Oli	(C)	William Crooks	(a)	E. Golds	
57.	(a)	0.55 ma	(b)	0.184 mg		(c)	1.673 mg	(d)	1.008 m	
38.	For the	P sub shell th	e azimı	ithal qua	ntum numb	er `` <i>l</i> " is:		(-)		(BWP 08)
	(a)	2	(b)	3		(c)	zero	(d)	1	
39.	If an e	lectron is free	from th	e attrac	tion of nucle	us then	its energy is:			(BWP 08)
40	(a) In disc	Negative	(D) porimor	Positive	occure of an	(C)	Zero	(a)	None of	(PWD 10)
40.	(a)	760 torr	(h)	0 1 torr	essure or ga	(c)	0.01 torr	(d)	10 torr	(BWP IU)
41.	Splittir	ng of spectral l	ines wh	en atom	s are subjec	ted to st	trong magneti	c field is	called:	
	(a)	Zeeman effect			2	(b)	Stark effect		(BW	/P 10, 11)
	(c)	Compton effect	_			(d)	Photoelectric ef	fect		
42.	Which	one of the foll	owing s	eries lie	s in ultraviol	et region	n: Deceber	(-1)	Due al cat	(DGK 08)
43	(a) The ch	Lyman ane of `P' orbit	(D) als is:	Baimer		(C)	Paschen	(a)	вгаскес	(DGK 08)
101	(a)	Double dumb-be	ell	(b)	Spherical	(c)	Dumb-bell	(d)	Complic	ated
44.	Value	of Rydberg's co	onstant	is:		(-)		(-)		(DGK 10)
	(a)	$1.7904 \times 10^{7} \text{ m}^{-1}$	•1			(b)	1.9768×10 ⁷ m ⁻¹			
45	(C)	1.09678 × 10 ⁷ n	n ⁻¹	•	an ia O ti	(d)	$1.6 \times 10^{7} \text{ m}^{-1}$			
45.	wnen (a)	t ne azimutnal (5 values	duantu (b)	7 valuec	er is 3 then `	m [°] can h	ave 2 values	(d)		(DGK 11)
	(u)	5 values	(0)		10			(u)	J values	,
					10					

46. Total number of spectral regions in sunlight spectrum is:									(LHR 10)
	(a)	4	(b)	6	(c)	7	(d)	8	

PASS[®]Education system

ANSWER KEY

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
С	d	d	а	С	b	а	b	С	b	С	а	b	b	а
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
b	b	а	d	С	d	С	b	а	b	b	а	d	С	С
31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
d	d	а	а	d	d	а	d	С	С	а	а	С	С	b
46														
С			13	/ <		-	_							

EBUCATION

www.passpk.com

Chapter #06

1.	Which	of the followi	ng mole	cules has a co	ordinat	e covalent b	ond?		(LHR 05)
	(a)	HCI	(b)	NaCl	(c)	NH₄Cl	(d)	AICI ₃	
2.	The an	gle formed in	sp hybr	idization is:					(GRW 06)
-	(a)	120°	(b)	180°	(c)	109.5°	(d)	107.5°	
3.		compounds are	e mostly	obtained by t	he com	bination of g	group:	1	(GRW 07)
4	(d) Dinolo	3 and 5		2 and 5	(C)	4 and 8	(a)	I and /	
4.			(h)	Zero D	(c)	0.95 D	(4)	220	(GRW 07)
5	(a) In cn ²	hybridization	the orb	itals are orien	ted at a	nangle of	(u)	2.2 D	
5.	(a)	109.5°	(b)	120°	(c)	180°	(d)	0°	
6.	Which	of the followi	ng speci	es has unpaire	ed elect	ron in anti l	conding m	olecular orbi	tals?
							(M	TN 08, 10, BW	/P, LHR 08)
	(a)	H ₂	(b)	He ₂	(c)	O ₂ +2	(d)	N ₂ -2	
7.	A mole	cular orbital o	can cont	ain maximum	electro	ns equal to:		_	(LHR 08)
-	(a)	One	(b)	Two	(c)	Three	(d)	Four	
8.	Carbor	n dioxide and	methane	e have dipole n	noment				(GRW 08)
0	(d) Nobol	Zero and 1.85.		1.70 D and 1.80	0 D	(C) Botr	nave zero	(a) None	or these
9.		They are very o	aximum cafe	Stability and I	eastrea	(b) The	ise: ir valence sh	olls are comp	(GRW U/)
	(a) (c)	They are dases				(d) The	v are preser	nt in zero arou	in
10.	Which	species has u	npaired	electron in an	ti-bond	ing molecula	ar orbits?	ic in zero grou	(GRW 09)
	(a)	O_2^{+2}	(b)	N2 ²⁻	(C)	B ₂	(d)	F ₂	
11.	Octet r	ule is not follo	owed in	the formation	of:	2.		(FSD 11, GI	RW 09, 12)
	(a)	NF3	(b)	CF ₄	(c)	CCl ₄	(d)	PCI ₅	
12.	The mo	ost stable elen	nents ar	e:					(LHR 09)
	(a)	Halogens	(b)	Lithium family	(c)	Noble gases	(d)	None of these	9
13.	The hy	bridization of	carbon	in C ₂ H ₄ is:		2	<i>(</i>))	(GRW	09, LHR 14)
	(a)	sp	(b)	sp ²	(c)	sp³	(d)	not hybridize	
14.	POSITIV	Cotions	ea:	Anions	(c)	Moloculos	(d)	Hydratod ion	(LHR 09)
15	(a) Total n	umber of bon	ds in Ca			Molecules	(u)	Hyurateu ion:	S (I HR 11)
13.	(a)	Six	(h)	Four	(c)	Five	(d)	Fight	
16.	The S.	unit of dipole	e momei	nt is:			(4)	()	HR 10, 11)
	(a)	Joule	(b)	Debye	(c)	Coulomb me	eter (d)	Nm ⁻²	
17.	Ionic,	covalent and o	co-ordin	ate covalent b	ond are	present in:			(GRW 11)
	(a)	SO ₂	(b)	NH4CI	(c)	C ₂ H ₂	(d)	H ₂ O	
18.	The hig	ghest electron	egative	element in the	e perioc	lic table is:		(FSI), GRW 11)
	(a)	Oxygen	(b)	Nitrogen	(c)	Chlorine	(d)	Fluorine	
19.	Bond a	ngle between	H-S-H I	onds is:		000		0.50	(LHR 10)
20	(a)	105.5° tofdinolomo	(D)	107.5°	(C)	92°	(D)	95°	
20.	5.1 UIII		(h)	Debve	(c)	mC	(4)	A11	(LHK IU)
21.	The an	pill Jount of energy	(U) IV releas	sed by absorbi	na elec	tron in the v	(u) Jalence sha	ell is: <mark>(MTN 0</mark> 9	3, 09, GRW 10)
<u></u>	(a)	Ionization ener	av (b)	Electron affinity		Electro-nega	tivity (d)	Atomization e	enerav
22.	The nu	mber of elect	rons sha	red in SF6:			, (~)		(GRW 10)
	(a)	4	(b)	12	(c)	6	(d)	8	

www.passpk.com

23.	Which	of hydrogen h	halides h	has highest %	ofionic	character?	(FSD 07	, 09, RWP 09, 11	l, LHR 13)
24	(a) Th o ao		(D)	HBr	(C)	HF	(a)	HI	
24.	(a)		(h)	Diano triangula	or (c)	Totrahodral	(4)	None of these	(FSD 07)
25	(a) Orbita	lineal	(U) e eneras	vare called:	ar (C)	reuaneurai	(u)	None of these	(ESD 08)
23.	(a)	Hybrid orbitals	(h)	Degenerate or	bitals	(c) Valenc	e orbital	s (d) Molecula	r orbitals
26.	The fo	ur equivalent	sp ³ hybr	id orbitals in	space a	re at angels of	:		(FSD 08)
	(a)	120°	(b)	107.5°	(c)	109.5°	(d)	104.5°	
27.	Which	has unpaired	electror	ns in anti <mark>-bo</mark> n	ding mo	lecular orbital	s?	(FSD 08	8, SGD 11)
••	(a)	N2 ⁻²	(b)	02+2	(c)	B ₂	(d)	F ₂	
28.	The ge	ometry of eth	ane is:	Triconal plana		Lincor		(FSD 0)	9, LHR 13)
20	(a) The pa		(D)			Lined on the k	(u) hasis of	v-snapeu	
29.	(a)	VSEPR theory	(b)	VB theory		MO theory	(d)	None of these	(360 09)
30.	The bo	nd order of N	2 accord	ling to MO the	ory is:	ino anosiy	()		(SGD 09)
	(a)	Zero	(b)	1	(c)	2	(d)	3	
31.	Which	of the followi	ng comp	bound has a c	o-ordina	te covalent bo	ond?	(DG	K, SGD 10)
	<u>(a)</u>	NH₄CI	(b)	NaCl	(c)	HCI	(d)	AICI₃	
32.	The ca	rbon atom in (C ₂ H ₄ is:	21 1 1 1	~~				(SGD 10)
22	(a)	sp ³ hybridized	(b)	sp ² hybridized	(C)	sp hybridized	(d)	dsp ² hybridized	
33.	(a)		(h)					n is: CH4	(SGD 11)
34.	Which	of the followi	na speci	ies has config	uration	of Neon?	(u)		(RWP 08)
0.11	(a)	Na ⁺	(b)	Ca ⁺²	(c)	Cl	(d)	None of these	
35.	The hy	bridization of	carbon	in CH4 is:	(-)	15	/		(RWP 08)
	(a)	sp	(b)	sp ²	(c)	sp ³	(d)	dsp ³	
36.	M.O.T	was proposed	by:		JN	0		(DGK 1	1, RWP 10)
	(a)	Moseley	(b)	Werner	(c)	Kossel	(d)	Mullikan	
37.	The nu	imber of bond	s in Nitr	ogen molecul	e is:	0	1 to D:		(RWP 10)
	(a) (c)	Une sigma and	I ONE PI		(D) (d)	Une sigma and	I TWO PI		
38.	The ge	ometry of eth	ane is:	\bigcirc	(u)	Two sigina and			(RWP 11)
501	(a)	Tetrahedral	(b)	Trigonal plann	er(c)	Linear	(d)	V-shaped	(
39.	In Al ₂ C	D ₃ the ratio be	tween t	he ions is:					(MTN 07)
	(a)	1:2	(b)	2:1	(c)	2:3	(d)	3:2	
40.	VSEPR	theory was p	roposed	by:					(MTN 07)
	(a)	Nylholm and G	illespie (t	o) Kossel	(c)	Lewis	(d)	Sidgewick	
41.	$U_2 mo$	Bonding oloctr	nagnetic	c because: qual to the anti	bonding	oloctrons			(MIN 07)
	(b)	Bonding electro	ons are n	ore than anti-h	ondina e	lectrons			
	(c)	Bonding electro	ons are le	ess than anti-bo	onding ele	ectron			
	(d)	It contains unp	aired ele	ctrons					
42.	NH₃ ha	s a net dipole	momen	t, but BF₃ has	zero dij	pole movemen	nt becau	ise:	(MTN 07)
	(a)	B is less electro	onegative	e than N	(b)	F is more elect	ronegati	ve than N	
40	(c)	BF ₃ is pyramid	al while N	NH₃ is planar	(d)	NH ₃ is pyramid	al while	BF₃ is trigonal pla	anar
43.	Ine nu	imber of bond	s in oxy	gen molecule	IS:	Turn starrage base			(MTN 08)
	(a)	Une sigma and	one PI-D	ona	(D) (d)	I wo sigma bon	Ias		
44	Which	of the followi	na mole	cule has zero	dinole n	noment?		(MTN 0	9 SWI 15)
	(a)	NH ₃	(b)	CHCl ₃	(C)	H ₂ O	(d)	BF3	
45.	When	two atoms for	m á bor	nd, energy is:	. /		. /		(MTN 09)
	(a)	Released	(b)	Absorbed	(c)	Not changed	(d)	None of these	
46.	Maxim	um electrone	gativity	is of:					(MTN 09)
					20				
		Prepai	red By:	PASS Educ	ation S	System (Tea	m)		
		For Or	line Er	ntry Test Pr	eparat	ion: 0304-0	66600	0	

For Evening Coaching: 0310-4745204

			W	ww.p	asspk.co	DM			
	(a)	N	(b)	F	(c)	0	(d)	Cl	
47.	The	bond energ	y of hydrog	en mole	cule is KJ/mo	le:			(BWP 08)
	(a)	436	(b)	440	(c)	420	(d)	460	

PASS[®]Education system

www.passpk.com

48.	The va	lue of dipole n	noment	of CS ₂ is:					(BWP 09)
	(a)	0.12D	(b)	Zero	(c)	1.61 D	(d)	0.95 D	
49.	The na	ture of bond in	n diamo	nd is:					(BWP 10)
	(a)	Electrovalent	(b)	Covalent	(c)	Metallic	(d)	Co-ordinate cova	lent
50.	Octet r	ule is not follo	wed in	formation of:					(BWP 10)
	(a)	NF₃	(b)	CF ₄	(c)	CCl ₄	(d)	PCl₅	
51.	The sh	ielding effect i	s respo	nsible for:					(BWP 11)
	(a)	The decrease in	nuclear	attractive influe	nce over	the valence ele	ctrons		
	(b)	The increase in	nuclear	attractive influer	nce ov <mark>er</mark>	the valence elec	trons		
	(c)	The decrease re	epulsion	between nucleu:	s and inr	ner electrons			
	(d)	The increase in	attractic	on between nucle	eus and	inner electrons.			
52.	The ele	ements having	low ior	nization energy	are:				(DGK 08)
	(a)	Non-metal	(b)	Metals	(c)	Semi-metal	(d)	Metalloids	
53.	Which	of the followir	ng is not	t isoelectronic	with re	st of the three	?		(DGK 08)
	(a)	K+	(b)	Na ⁺	(c)	Cl-	(d)	S ⁻²	
54.	Which	of the hydroge	en halid	es has the hig	hest pe	rcentage of ac	id chara	acter:	(DGK 09)
	(a)	HCI	(b)	HBr	(c)	HF	(d)	HI	
55.	The fo	ur equivale <mark>nt</mark> s	s <mark>p³ hy</mark> br	id orbitals in s	pace ar	e at an ange <mark>l o</mark>	f:		(DGK 09)
	(a)	120°	(b)	107.5°	(c)	104.5°	(d)	109.5°	
56.	Total n	umber of sign	na bond	<mark>s in Ethyne (</mark> C	H≡CH) a	are:	1		(DGK 10)
	(a)	Five	(b)	Three	(c)	Two 🖉 📐	(d)	Four	
57.	Bond f	ormed by mut	ual shar	ring of electro	ns is cal	led: 🦯 🚬 🤍	5/		(LHR 12)
	(a)	Ionic bond	(b)	Covalent bond	(c)	Co-ordinate cov	alent bo	nd (d)	<u>All of thes</u> e
58.	Format	tion of chemica	al bond	takes place w	hen:	1	/		(LHR 13)
	(a)	Energy is absor	bed	(b)	Forces	of repulsion over	come fo	rces of attraction	

- Forces of attraction are equal to forces of repulsion (c)
- Forces of attraction overcome forces of repulsion (d)

ANSWER KEY

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
С	b	d	b	b	d	b	С	b	b	d	С	b	а	а
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
С	b	d	С	C	b	b	С	а	b	С	а	а	С	d
31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
а	b	d	а	С	d	b	а	С	а	d	d	а	d	а
46	47	48	49	50	51	52	53	54	55	56	57	58		
b	а	b	b	d	а	b	b	d	d	b	b	d		
					5	y S								

www.passpk.com

Chapter #07

1.	Spontaneous reactions are:					(LHR 05)
-	(a) Reversible (b)	Irreversible (c)	Non irr	eversible	(d)	None of these
2.	The standard heat changes	occur at:	(1-)	200 // and 1 at	[BWP 08, GRW 06)
	(a) 25° C and 2 atm		(b)	298 K and 1 at	m	
2	(c) 25° C and 1 mm ng	in onthalmy for reacti		2/3 K and 1 atm		
з.	(a) Host of reaction	in enulary for reaction	(h)	heat of formati	on	(LNK 00)
	(c) Heat of neutralization		(d)	Heat of combu	stion	
4	The net change in energy in	a chemical reaction i	s same	whether it tak	es nlac	e directly or
-11	indirectly. It is called:		5 Sume		RWP 11.	GRW 07, BWP 10)
	(a) Henry's law (b)	Charlie's law	(c)	Hess's law	(d)	Graham's law
5.	The enthalpy change when	one mole of substanc	e is con	pletely burnt	in exce	ss of oxygen is
	called:					(LHR 07)
	(a) Enthalpy of atomization		(b)	Enthalpy of neu	utralizati	on
	(c) Enthalpy of Combustion	1	(d)	Enthalpy of for	mation	
6.	Enthalpy change for the rea	ction: CH _{4(g)} + 2O _{2(g)}	→CO 2(g)	+ 2H ₂ O(I) is cal	led ent	halpy of: <mark>(LHR 08)</mark>
	(a) Formation (b)	Combustion	(c)	Neutralization	(d)	Atomization
7.	Standard enthalpies are me	asured at:		121		(FSD 11, LHR 09)
-	(a) 273 K (b)	298K	(c)	373 K	(d)	All of these
8.	The exothermic process is:				DGK	10, GRW, LHR 11)
•	(a) Evaporation (b)	Sublimation	(C)	Respiration	(d)	Boiling
9.	A state function which desc	ribes together the int	ernal e	nergy and the	product	of pressure and
	(a) Enthalpy (b)	Internal onergy	(c)	Work	(4)	
10	(a) Elitialpy (b)	stem is called:	(C)	VVOIK	(u)	
10.	(a) Entrony (b)	Enthalny	(c)	Temperature	(d)	Internal energy
11.	Whenever a reaction is exol	thermic, then it means	s that:	remperature	(u)	(GRW 10)
	(a) The heat is transferred	from surroundings to th	e system	n		
	(b) The heat content of the	e reactant is greater than	n product	t		
	(c) The heat content of the	e reactants is less than th	iose of p	oroducts		
	(d) The heat is transferred	from system to the surre	ounding	. 3 †1/	h r	
12.	At constant volume qv is equ	ual to:	JU	ali	J	(MTN 07, FSD 08)
	(a) ∆H (b)	ΔE	(c)	ΔP	(d)	ΔV
13.	The value of ΔH being very	small, the term Δ (PV)) can be	e neglected, fo	r the pr	ocess involving:
	(a) Liquid and gas		(b)	Liquid and solid	ds	(FSD 10)
	(c) Solids and gases	CVCTC	(d)	None of these		
14.	In a Bomb calorimeter, the	reaction are carried o	ut at co	onstant:		(SGD 10)
16	(a) Pressure (D)	WORK	(C)	volume	(a)	None of these
15.	(a) Heat is transforred from	othermic, than it means	ns that:	i		MIN 07, DGK 09)
	(d) Heat is transferred from	n surrounding to the syst	lina			
	(c) Heat content of the pro	ducts is greater than the	nng nse of th	e reactant		
	(d) Heat content of the rea	ctants is greater than th	ose of th	ne products		
16.	The number of fundamental	wavs for transferring	a enera	v into or out of	fsystem	(MTN 08)
	(a) One (b)	Two	(c)	Three	(d)	Four
17.	Work is product of force and	d:	\ = <i>I</i>		X-7	(MTN 09)
-	(a) Volume (b)	Time	(c)	Displacement	(d)	Pressure
			. ,		. /	

www.passpk.com

18.	The	e entha	alpies o	of all el	ement	ts in th	eir sta	ndard s	states	are:		,			(MTN 10)	
	(a)	Un	ity	(b)	Zero			(C)	A	ways pos	sitive (d) /	Always i	negative	1
19.	wn	icn of t	the fol	lowing	is not	t a stat	e funci	tion?		-		,			L, LHR 14)	
	(a)	Pre	essure	(D)	volume			(C)	IE	emperati	ire (c	1) F	leat		
20.	Bor	n-Hab	er's cy	cle is u	ised to	o deter	mine t	he:		_					(DGK 08)	
	(a)	Co	mbustic	on energ	JY				(b)	De	ecompos	ition en	ergy			
	(C)	Lat	tice en	ergy					(d)	FC	rmation	energy				
						/	ANS	WER	KE	Y						
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
	b	b	С	С	С	b	b	С	а	b	b	b	b	а	С	
	16	17	18	19	20					C T						
	b	С	b	d	С											
					EBO	CA		DN	s	5	- mz					

PASS[®]Education system

www.passpk.com

Chapter #08

1.	The value of pH a	and pOH of	pure water a	t 25°C is	approx	imately:			(LHR 05)
	(a) 14	(b)	7	(C)	1×10^{-1}	14	(d)	1×10^{14}	1
2.	Equilibrium cons	tant for gas	eous equilib	rium is re	presen	ted by:	<i>(</i>))		(DGK 10)
-	(a) K _a	(b)	Kc	(C)	Kx		(d)	Kp	
3.		t a very str	ong base is re	elatively:	Vonuu	alkasid	(4)	stuana	GRW 06)
Λ	(d) Very strong		Weak aciu	(C)	very we	Eak aciu	(u)		
4.	(a) 1	(h)	18	(c)	55 5	\mathbf{O}	(d)	6	IK U0, 12)
5.	The suppression	of ionizatio	n of weak ac	id or a w	eak bas	se by adding o	ne of it	s own io	ns is
•	known as:					-,,,			(GRW 07)
	(a) Buffer actio	on (b)	Common ion e	effect	(c)	Buffer capacity	′ (d)	Ionizati	on effect
6.	By adding NH ₄ Cl	to NH₄OH s	olution, the i	onizatio	n of NH	₄OH:			(LHR 08)
	(a) Increases	(b)	Decreases		(c)	Remain same	(d)	Increas	es 100 times
7.	pH of tomato is:		42 /					0.0	
0	(a) 1.2	(D)	4.2	ocition i	(C)	7.2	(D) (MTNLO)	9.2 DCK 11	
δ.	(a) Towards lot	Small, the	Towards right		Domain	c unchanged		None of	f those
9	A basic buffer so	lution can b	e prepared b	v mixing		is unchanged	(u)	NULLE UI	(GRW 08)
51	(a) A strong ag	rid and salt w	with weak base	y mixing	(h)	Weak base and	d its salt	with stro	ng acid
	(c) Strong base	e and its salt	with weak acid	d	(d)	Weak acid and	its salt v	with stror	ng base
10.	The pOH of solut	ion is 4. Th	e H ⁺ ions con	centratio	on of so	lution is:	(M1	FN 07, 08	, GRW 09)
	(a) 4.0 moles/	dm³ (b)	10 ⁻¹⁰ moles/di	m ³	(c)	0.4 moles/dm ³	(d)	$4 imes 10^4$	moles/dm ³
11.	The concentratio	ns of react	ants and proc	ducts at e	equilibri	um are:			(LHR 09)
	(a) Equal	(b)	Maximum		(c)	Minimum	(d)	Constar	nt
12.	The term pH was	introduced	by:			Caldatain	(GRW 1	1, LHR 1	1, 12, 13)
12	(d) Henderson	(D)	Sorenson	on hvi	(C)	Goldstein	(a)	Inomsc	
15.	(a) = k = k			rl Dy.	(c)		(d)	K – K	
14	$(a) \qquad R_c = R_p$	$KCIO_2$ in wa	ter is suppre	ssed hv :	adding	Kp = Kc(KT)	(u)	Kp – Kc	(GRW 11)
14.	(a) NaClO ₃	(b)	NaCl	.ssca by t	(c)	KMNO4	(d)	KCI	
15.	Law of mass acti	on was der	ived by Guld	perg and	wage in				(LHR 10)
	(a) 1909	(b)	1906	UU	(c)	1846	(d)	1864	
16.	Ionization of hyd	rogen sulp	hide gas is su	ppresse	d by:		. ,		(GRW 10)
	(a) KCl	(b)	NaCl		(c)	HCI	(d)	NH4Cl	
17.	The pH of human	blood is:		ير بالد			(M	TN 07, 08	8, GRW 10)
10	(a) 7.0	(b)	4.0	ST F	(c)	6.5	(d)	/.4	
18.		t of water v	viii increase i			ave added		GRW 1	0, LHR 13)
	(a) H' IONS are	added	d	(D) (d)	UH ION	are added	dad in a		unt
10	When HCl is add		u menus soluti	ion its io	nizatio		ueu in e		9 I HP 14)
19.	(a) Increases	(b) Rema	ins constant (c) Decre	ases	(d) F	irst decr	eases the	n increases
20.	Which of the foll	owing facto	or affects on e	quilibriu	im cons	tant?			(MTN 08)
	(a) Change in t	emperature		-	(b)	Change in con	centratio	n	
	(c) Change in	Pressure			(d)	Change in volu	ime		
21.	Which one of the	following	salt dissolves	in wate	r to forr	n a solution w	ith pH g	greater t	:han 7?
	(a) NaCl	(b)	CuSO ₄		(c)	Na ₂ CO ₃	(d)	NH₄CI	(MTN 09)

www.passpk.com

22	. pl	l of mi	lk is 6.	5, its p	OH wil	l be:								(1	4TN 09)
	(a) 1	4		(b)	7.5			(c)	7		(d)	no	ne of <u>t</u> h	nese
23	. Tł	ne unit	of equ	ilibriur	n cons	tant K	for th	e reac	tion H ₂	+ I2	<u></u> 2H	I is:		()	4TN 10)
	(a) №	lole ⁻¹ dr	n ³	(b)	Mole ⁻²	dm ³		(C)	Mole	e dm⁻¹	(d)	No	ne of th	nese
24	. W	hich o	f the fo	llowin	g react	ions w	vill be fa	avored	to the	forwar	d dire	ction at	t low p	ressure	2?
	(a) N	$l_2 + O_2$	<u> </u>	2NO				(b)	N2 +	3H ₂ _	<u>2</u> N	H₃	()	4TN 10)
	(C) P	Cl5	<u> </u>	+ Cl ₂		-		(d)	H ₂ +	I2	<u> </u>			
25	. pl	l of a l	ouffer o	an be	calcula	ted by	using:		_					()	4TN 11)
	(a) M	loseley's	s equati	on				(b)	Hend	derson's	s equation	on		
	(c) D	e-Brogl	ie's equ	ation				(d)	Bohr	's equa	tion		_	
26	. In	ı synth	esis of	ammo	nia by	Haber'	's proce	ess. Th	e optin	num co	nditior	ו for pr	essure	is: 🚺	4TN 11)
	(a) 1	50-160	atm	(b)	170-20	00atm		(c)	200-	300 atr	n (d)	30	0-350 a	tm
27	. A	solutio	on has	р ОН =	12 it is					<u> </u>				(1	3WP 08)
	(a) A	base	. /	(b)	An acio	d		(c)	Neut	ral	(d)	No	one of th	nese
28	. In	the re	eaction	$N_2 + 3$	H2	<u>2</u> 2Nł	H₃ the o	catalys	t used i	is:		1		(1	3WP 08)
	(a) F	е		(b)	Ni		14	(c)	Pt		(d)	Pd	_	
29	. Tł	ne valu	e of eq	uilibriu	um con	stant o	can pre	dict:						(1	3WP 09)
	(a) Т	he dired	ction of	reactior	۱			(b)	The	extent	of reacti	on		
	(C) Т	he effect	t of cat	alyst us	ed	-		(d)	Both	the dir	ection a	nd exte	ent of re	action
30	. Tł	e pH o	of 10 ⁻³ I	nol dm	⁻³ of a	n aque	ous sol	ution of	of HCI is	5:				_ (0	3WP 10)
	(a) 3	.0		(b)	2.7	_		(C)	2.0	2	(d)	1.5	·	
31	. Fo	ormatio	on of N	H ₃ is a	n exoth	nermic	reactio	on. Low	/ tempe	erature	favor	s forwa	rd read	ction. I	lowever
	in	Haber	's proc	ess ter	nperat	ure us	ed is:			4000	× /	(1)			3WP 10)
	(a) 2	00°C		(b)	300°C			(c)	400°	C	(d)	50	0°C	
32		ne unit	of equ	ilibriur	n cons	tant (K	(c) for t	ne read	ction:	~				(1	SWP 11)
	(-	`	مر بن من ا	. t	N2 + 3			3 ∆ H =	-92KJ			(4)	M	la-2 due d	-6
22	(a) 🗆	aving n	dod to	(D) Distant	mole d			(C)		hrium	(U) ic chift		he (D)	· VD 1 1 \
33	. vv		orword	direction	a salu		ard dire	tion	(c)	equin	offector				
24	(a Te) r which	orwaru		in (D)	Dackwo					anected	i (u)	All		
54	. 1						s ne allu	I Kp VVI	h) h	uai. Na ⊥	2H2	<u>,</u> 2N	Цa		JGK 06)
	(a) r \ 7			× 250-	G			(d)			<u></u> 2N	113		
25) Z	502 ± 0		<u>~</u> 2503	(h)	tod co	lution	(u) of NoCl					7	
33	. w			sseu u	h)	Docroa	ateu so	lution		Not	offoctor			uno of a) <u>GK 10)</u>
26	(a nl	/ 1 Jofrai	in wate	u rici	(0)	Decrea	iseu		(C)	NOL	aneciei	(u)			11
50	. рі (э) 5		1 15.	(h)	6.0			(c)	6.2		(d)	70	h	
37	(a T ł) Ja law	.0 of mas	e actio	() n was	o.o aivon t	.		(C)	0.2		(u)	7.0	,	SWI 15)
57	. (a			n and P	Waane	giveni	Jy.		(h)	Gav-	lussaic	and C I	M Guldh	era IC	
	(a)		M Guld	hera ar	nd P Wa	ane	-	din .	(d)	Hand	terson :	and Le-	Chatelie	r Pr	
) (berg ui		uge		T ((4)				Chatch		
						\mathbf{i}	ANC	WED	KEV						
							ANS	WEK	KEY						
ſ	1	2	2	Λ	F	6	7	Q	0	10	11	12	12	1/	15
ŀ	-	ک	5		- 3	0	h	0	7	TO	**	12	13	14	4
ŀ	d	u 4 -		C	0	0	D	d 22	0	0	u ac	0	C	u 20	u DC
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
	С	d	C	С	а	C	b	d	C	b	С	b	а	d	а
	21	37	33	34	35	36	37								

26

Prepared By: PASS Education System (Team) For Online Entry Test Preparation: 0304-0666000 For Evening Coaching: 0310-4745204

d

С

b

d

b

С

С

www.passpk.com

Chapter #09

1.	Depre	ession in the	freezing	point is	s directly pro	oportional	to:		(LHR 05	5)
	(a)	Molarity of s	olution	(b)	Molality of	solution(c)	Molality of	solvent	(d)	None
2.	Mola	ity of solution	on is expre	essed i	n:				(GRW 0	7)
	(a)	Moles/kg		(b)	g.dm ⁻³	(c)	dm ³ . mole ⁻	1	(d)	mole. dm ⁻³
3.	The n	o. of moles o	of solute d	lissolv	ed <mark>per dm³ (</mark>	of solution	is called:		(LHR 07	
	(a)	Molarity	(b) 🦯	Molali	ty	(c)	Normality	(d)	Mole fra	<u>ic</u> tion
4.	Benzo	ene – ether c	an form:	<u>_</u>					(LHR 07	
_	<u>(</u> a)	Ideal solutio	n (b)	Non-	ideal solution	(c)	Buffer solu	tion (d)	None of	these
5.	Inar	nixture of 28	grams of	t N ₂ an	d 96 grams	of O ₂ the n	nole fractio	nof N ₂ :	(LHR 08	
~	(a)	1.1 h an h diarahu		(b)	0.51	(C)	0.25		(d) (GD)// (0.11
0.			es in wat	er to re			Greater t	nan 7.		8)
7	(a) The n	umber of mo	les of sol		r kilogram o	f solvent is	s called:	(u)		(0)
/.	(a)	Molality (h		Molar	itv(c)	Mole-f	raction	(b)	Normali	tv
8.	0.1 m	olar of solut	e dissolve	d in 1	00a of the s	olvent will	be:	(LHR	09, GRW :	10)
	(a)	0.1 molar		(b)	1.0 molal(c) 0.5 m	blal	(d)	none of	these
9.	Raou	lt's law is rep	presented	by:					(LHR 09	9)
			10			ΔΡ				
	(a)	$P=P^{o}X_1$	1.0	(b)	$\Delta P = P^{o}X_{2}($	(c) $\overline{P_0} =$	X ₂	(d)	all of th	ese
10.	The am	ount of NaO	H require	d to pr	epared 250	cm ³ of 1M	solution in	grams is:	(GRW 11)	
	(a)	10	1	(b)	15 (c)) 20	· / /	(d)	25	
11.	10g Na	OH dissolved	d per 250	cm ³ of	solution ha	s molality:	5 /		(LHR 10)	
	(a)	0.5 M		(b)	1.0 M (c)) 1.5 M		(d)	2.0 M	
12.	The a	azeotropic m	nixture of	f solut	ion showin	g positive	deviation	can be di	istilled a	t
	boilin	g point.								(FSD 07)
	(a)	Maximum		(b)	Minimum (c) No sha	arp	(d)	None of	these
13.	The h	vdration ene	ergy of Br	ion is	· · · · ·	_than F- io	n:		(FSD 07	
	(a)	Equal to		(b)	Smaller that	an (c)Greate	r than	(d)	None of	these
14.	The n	nolal boiling	point elev	vation	depends up	on.			(FSD 08	3)
	(a)	Nature of so	lvent (b)	Vapo	ir pressure of	f solution (c)	Nature of s	olute (d)	pH of so	olution
15.	Chem	ical used to	protect a	car by	preventing	the liquid i	n the radia	tor from fi	reezing is	34(FSD 09)
	(a)	Phenol (b		Ethyle	ene glycol (c)		KNO3	(d)	Methan	ol
16.	Whic	h is a Colliga	tive prope	erty?					(FSD 10	
	(a)	Change in v	apour pres	sure of	a solution	(b)	Change in	free energy	of a solut	ion
	(c)	Heat of vapo	ourization o	of solve	nt in the solu	tion (d)	Lowering o	of vapour pr	essure of	a solution
17.	The c	oncentration	of solute	e in the	solution w	hen it is in	equilibrium	with the	so <u>lid sub</u>	<u>st</u> ance at a
	partio	cular tempera	ature is ca	alled it	s:	EII			(SGD 1	0)
	(a)	Solubility		(b)	Molarity	(c)	Molality	(d)	Mole fra	action
18.	Molai	[•] concentrati	on is calle	ed:					(RWP 0	8)
	(a)	Active mass		(b)	Weight	(c)	Mass	(d)	None of	these
19.	An aq	ueous soluti	on of pota	assium	acetate (Cl	H₃OOK) is:			(RWP 0	8)
	(a)	Acidic		(b)	Basic	(c)	Neutral	(d)	Amphot	eric
20.	2g of	NaOH is diss	solved in 5	500 cm	³ of solution	n. The mola	rity of the	solution is	(RWP 09	
	(a)	2.0 M		(b)	1.0 M	(c)	0.2	(d)	0.1 M	
21.	Whic	h one of the	following	gives a	acidic soluti	on when d	issolved in	H ₂ O?MTN ()7, RWP 1	1)
	(a)	NaCl		(b)	Na ₂ SO ₄	(c)	NH₄CI	(d)	CH₃COC	DNH4

PASS Entry Test Series

(ECAT, NUST-NET, NTS-NAT, COMSATS, FAST, PIEAS, GIKI, UHS, Army Medical, PIMS)

www.passpk.com

2	22.	In a mi	ixture o	of 7g of	N ₂ and	l 8g of	O ₂ the I	mole fra	action o	of O ₂ is:			(MT	N 07)	
		(a)	1			(b)	0.2		(c)	0.5		(d)	0.2		
2	23.	Cheese	and bu	utter ar	e the e	exampl	e of sol	ution o	f:				(MT	'N 08)	
		(a)	Liquid i	n liquid		(b)	Solid i	n solid	(c)	Liquio	d in solie	d (d)	Soli	d in liqu	id
2	24.	A solut	ion con	taining	j 5.3 g	of Na ₂	CO₃ diss	solved p	per dm ³	' is:			(MT	N 09)	
		(a)	1.0 M			(b)	0.1M		(c)	0.5 M	l	(d)	0.05	5 M	
		25.	Water o	of cryst	allizati	on of C	CuSO ₄ is	5:					(МТ	N 09)	
		(a)) fiv	/e			(b) t	ten	(c)	two		(d)	six		
	26.	If we d	dissolve	$a Na_2SC$	D4 in wa	ater the	en the s	olution	is:				(BV	/P 08)	
		(a)	Aci	dic	/	(b) B	asic	(c)	Neutr	al	(d)	All o	of these	
2	27.	Solutio	n conta	aining r	elative	ly low	er c <mark>onc</mark> e	entratio	ons of s	olutes	are cal	led:	(BW	/P 09)	
		(a)	Dilute s	olutions	/		-	_	(b)	Conce	entrated	l solutio	ns		
		(c)	Saturate	ed solut	ions	~			(d)	Ideal	solution	าร			
2	28.	The cri	tical so	lution 1	temper	ature	of phen	ol-wate	er syste	m is:			(DG	K 08)	
		(a)	35.6°C		_	(b)	49.5°C		(c)	57.8°	С	(d)	65.9	₽°C	
2	29.	Which	one of	the foll	owing	is an ic	leal solu	ution:	5 . I				(DG	K 10)	
		(a)	C ₂ H ₅ OH	and H ₂	0	(b)	C ₆ H ₆ a	and CCl ₄	(C)	CHCI	and (C	H3)2 CO	(d)	I ₂ O and	HCI
3	80 .	The ma	iss of G	lucose	require	ed to p	repare	$1 \mathrm{dm^3}$ c	of 20%	glucos	e <mark>sol</mark> uti	ion is:	(DG	K 11)	
		(a)	18g			(b)	180g		(c)	36g		(d)	200	g	
				1		1						1			
					E	/	ANS	WER	KEY	13	8				
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	b	d	а	а	С	С	а	b	d	a	b	d	b	а	b
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
	d	а	а	b	d	С	С	С	d	а	С	а	d	b	d

PASS[®]Education system

www.passpk.com

Chapter #10

40%

(a)

(b)

25%

1.	Reduct	tion always tak	ces plac	e:						LHR 05, 12)	
	(a)	At anode				(b)	At cathe	ode			
	(c)	At both electrod	les			(d)	does no	ot occu	r at electro	de <u>s</u>	
2.	The ele	ectrolyte KOH i	is used i	in cell:						(GRW 06)	
	(a)	Lead accumulat	or			(b)	Ni – Cd	cell			
	(C)	Alkaline battery	/			(d)	Silver o	xi <u>de ba</u>	attery		
3.	In the	reaction 2Fe +	· 3Cl ₂	→2FeCl ₃ :			^	(BW	P 10, GRW	09, LHR 06)	
	(a)	Fe is reduced			_	(b)	Fe is ox	dized			
	(c)	Cl ₂ is oxidized				(d)	None of	f these	happens		
4.	Oxidat	ion state of hy	drogen	in CaH ₂ is:						(GRW 07)	
	(a)	+1	(b)	-1	1	(c)	+2	(d)	zero		
5.	Cu met	tal can be puri	fied in e	electrolytic ce	ell by ma	king th	e impur	e Cu a	IS:	(GRW 07)	
_	(a)	Anode (b)	Cathode	e(c) Anode	e and Cat	hode	(d)	Deper	nds upon na	ture of solut	tion
6.	Loss of	f electrons is ca	alled:					<pre>/</pre>		(LHR 07)	
_	(a)	Oxidation	(b)	Reduction	(C)	Hydrat	ion	(d)	Dehydrat	ion	
7.	Fuel ce	ells convert che	emical e	nergy into:	()		1	<i>(</i>))		(GRW 07)	
•	(a)	Heat energy	(b)	Light energy	(C)	Electric	cal energy	y (d)	Mechanica	lenergy	
8.	Electro	olysis is used to	or:		с I.	/				(LHR 08)	
•	(a)	Electroplating	(D)	Manufacture o	of sodium	metal	(C)	Manu	racture of A	I (d) All of	these
9.	Nelson	s cell and Dov	vn's cei	are example	OT:		Electual		(FSD 0)	9, GRW 08)	_
10	(a) The ex	Electrochemical	cell r of Cr i	(D) Galvar	nic cell	(C)	Electrol	ytic ce		None of these	5
10.				11 K2Cr207 IS:		1			109, 10, LH	R 10,12,13)	
	(a) The ele		(D) in fuel o	+12	(C)	+0		(u)	+13		
11.	(2)		(b)	Molton NaCl	(c)	KOH		(d)		IR, GRW 10)	
12	(a) Which	Aqueous Naci	(D)	to.	(C)	KOH		(u)	IndinO3		
12.			(b)		(c)	Cumet	tal	(d)	Haso	(LHK II)	
12	(a) Oxidat	ion state of Mr	ic MnC	Aqueous cusc	J4 (C)	cume	lai	(u)	112504		
15.	(a)		(h)	+6	(c)	+5		(d)	-6	(LNK IO)	
14	In H ₂ O	• the oxidation) state (of oxygen is:	(C)	15		(u)	(SGD ()9. GRW 11)	1
T .	(a)	+1	(h)	-1	(c)	+2	21	(b)	-2	<i>)),</i> (km 11)	1
15.	Electro	de potential o	f S.H.E	arbitrarily tal	ken in vo	olts is:		(-)		(GRW 11)	
	(a)	0.00	(b)	1.00	(c)	0.01		(d)	0.50		
16.	Oxidat	ion number of	chromi	um in K ₂ Cr ₂ O	7 is:	0101		(4)	(RWP ()9, LHR 10)	
	(a)	2	(b)	4	(c)	6		(d)	12		
17.	E.M.f o	_ f Zn-Cu cell is:	(5)	CVC				(4)		(LHR 10)	
	(a)	0.0V	(b)	0.5 V	(c)	1.0V		(d)	1.10V		
18.	The ox	idation numbe	er of Mn	in KMnO4 is:				()		(FSD 07)	
	(a)	3	(b)	5	(c)	7		(d)	9		
19.	The ox	idation potent	ial of (S	5.H.E) is:				()		(FSD 08)	
	(a)	0.02V	(b)	0.1V	(c)	0.00V		(d)	0.20V		
20	The hid	nhest reduction	n noten	tial in the ele	ctroche	mical se	orios is d	nf Fa a	nd its valu	e is:(ESD 1	0)
	(a)	+3.87V	(h)	-3.87V	(c)	+2 87	V	(d)	-2.87V		
21.	Percen	tage of H ₂ SO ₄	used in	lead accumu	lator is:	. 2107	-	(~)	, t	(FSD 11)	

(c)

30%

(d)

50%

PASS Entry Test Series

(ECAT, NUST-NET, NTS-NAT, COMSATS, FAST, PIEAS, GIKI, UHS, Army Medical, PIMS)

www.passpk.com

22.	Catho	de in NI	CAD ce	ell is:	_						(MT	N 09, FS	SD 11,L	HR 14)
	(a)	Ag ₂ O		(b)	NiO ₂									
	(c)	Cd		(d)	Zn									
23.	Accore	ling to o	classica	l conce	ept, oxi	dation	involve	es:					(S(GD 10)
	(a)	Additior	n of oxy	gen			(b)	Remo	val of h	ydroger	1			
	(C)	Increas	e in oxic	lation st	ate		(d)	All of	above					
24.		$2O_2$, the	oxidati	on stat	e of ox	ygen is		-		(-)	. 1		(50	GD 11)
25	(a) The ex	-2 straction	a of No	(D)	+2	trolyci	(C)			(a) Nicelau	+1			
23.	(a)			(h)	Eucl co	SU SU					L III: Volt	aic coll	(RV	VP 08)
26	(d)	Downs	tellia di				(C)	he ethe		(u)	VOIL			omt it ia
20.	called	one me	Lai is u	eposite	a on th	le surra	ice of t	ne otne	er by th	e proce	255 01 6	ectric		
	(a)	Flectrol	vcic	(h)	Flectro	lytic ref	inina (c) Electr	onlating	(d)	Flec	trolytic		9, 11)
27	Sulph	ur has th	he hiah	est sta	te in:	iyuc rei	ining (c		opiating	(u)	LICC	(B)	WP RW	/P 10)
-/ 1	(a)	SO ₂	i e i i i gi	(b)	SO ₃		(c)	H ₂ S		(d)	H ₂ S(03		1 10)
28.	The ce	ell in wh	ich ele		enerav	is conv	verted i	into che	emical e	enerav	is call	ed:	(MT	N 07)
	(a)	Galvani	c cell	(b)	Electro	lvtic cel	(c)	Fuel o	cell	(d)	Dan	iel cell		
29.	In rus	ting of i	ron sho	own by	the rea	action 4	1Fe + 3		2F ₂ O ₃ , I	ron is:			(M	FN 07)
-	(a)	Precipit	ated	(b)	Reduc	ed	(c)	Hydro	olyzed	(d)	Oxic	lized		
30.	Electro	ochemic	al serie	es is the	e arran	gemen	t of the	e electro	odes in:		1		(M	FN 07)
	(a)	Increas	ing orde	er of red	uction p	otential	S	(b)	Decre	easing o	rder of	reductio	n poter	tials
	(c)	Increas	ing orde	er of oxid	dation re	eduction	potent	ial (d)	there	is not f	ixed arr	angeme	ent	
31.	When	aqueou	s NaCl	is elect	rolyzed	l, whic	h of th	e follow	ring get	t discha	arged a	it catho	ode:(Mi	FN 08)
	(a)	H+		(b)	Na ⁺		(c)	OH	~	(d)	Cl⁻			
32.	The o	cidation	numbe	er of ch	romiun	n in Cr ₂	03 is:	- 1	5	/			(M	FN 08)
	(a)	+3		(b)	+4	11	(c)	+6		(d)	+12			
33.	Gain o	of electro	ons is c	alled:		- A.	UN	0	/				(М	FN 09)
	(a)	Oxidatio	on	(b)	Reduc	tion	(c)	Disso	ciation	(d)	Elec	trolysis		
34.		ease in	oxidati	ion nun	nber is	called:						c	(M	FN 09)
	(a)	Oxidatio	on	(b)	Reduct	tion	(c)	Neutr	alization	i (d)	e.m	.t	c	
35.	Electro	Olysis is	the pro	DCESS II	1 which	a cher	nical r	eaction	takes p	blace at	t the ex	kpense	of:(MI	N10)
26	(d) These		ai energ	y(D)	Electric	cal ener		neat	energy	(u)	2019	ir energy		
30.		Drimary		(h)	Secon	lyeu al larv coll		u. Tortia	ny coll	-(d)	Non	a of the		VP ()
37	(a) Fuel c		erts ch	emical	operav	into:		Tertic	iry cen	(u)		e or the	SC (B)	VP 11)
57.	(a)	Heat on		(h)	Floctri	cal ener	$\alpha v(c)$	Magn	etic ene	ray(d)	Sou	nd ener		VP II)
38.	Which	one of	the foll	owing	cells is	used for	or the	extracti	on of N	a meta	l:	nu energ	у (D(SK ()8)
50.	(a)	Nelson's	s cell	(b)	Galvar	nic cell	(c)	Down	ís cell	(d)	All c	of these	cells	3N 00)
39.	Oxida	tion stat	te of ca	rbon in	glucos	se (C ₆ H	12 0 6) is	5:		(-)			(D(GK 11)
	(a)	Zero		(b)	One	IC	(c)	Two		(d)	Fou	r		
40.	The o	cidation	numbe	er of nit	trogen	in HNO	3 is:						(D(GK 11)
	(a)	+3		(b)	-3 👅		(c)	-5		(d)	+5			
41.	The be	est redu	cing ag	ent is:									(D0	GK 11)
	(a)	F ⁻¹		(b)	Cl-1		(c)	Br⁻¹		(d)	I-1			
42.	Galva	nic cells	which	cannot	be re-	charge	d are c	alled:					(G	RW12)
	(a)	Diffused	d cells	(b)	Second	dary cell	ls (c)	Tertia	ary cells	(d)	Prim	nary cells	s	
43.	Oxida	tion nun	nber of	oxyge	n in OF	2 is:							(LF	IR 14)
	(a)	Zero		(b)	-1/2		(c)	+2		(d)	-1			
						ANS	WED	KEV						
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
b	С	b	b	а	а	С	d	С	С	С	С	b	b	а
L	1					1								<u>. </u>
							30							

16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
С	d	С	С	С	С	b	d	С	а	С	b	b	d	а
31	32	33	34	35	36	37	38	39	40	41	42	43		
а	а	b	b	b	а	b	С	а	d	d	d	С		

www.passpk.com

PASS[®]Education system

www.passpk.com

Chapter #11

1.	Larger	the surface a	rea of th	ne reactant molecules	5:			
	(a)	Lower will be t	he rate o	f reaction	(b)	Higher will be t	he rate o	of reaction
	(C)	The rate of rea	iction rem	nains unaffected	(d)	The rate may in	ncrease d	or decrease
2.	In zer	o order reactio	on, the r	ate is independent of				
	(a)	Temperature o	f reactior	ı 🦳 📕	(b)	Concentration of	of reacta	nts
	(C)	Concentration	of produc	t	(d)	None of these		
3.	The or	der of reaction	n of O ₃ +	$- NO \longrightarrow NO_2 + O_2 is:$				
	(a)	One	(b)	Тwo	(c)	Three	(d)	Zero
4.	Decon	position of nit	trogen p	entaoxide has order	of react	tion:	. ,	
	(a)	Zero	(b)	First	(c)	Second	(d)	Third
5.	À subs	tance which r	etards t	he rate of reaction is	called:			
	(a)	Inhibitor	(b)	Activator	(c)	Oxidant	(d)	Auto-Catalvst
6.	The m	inimum amou	nt of end	ergy required for an e	effective	e collision is ca	lled:	
•-	(a)	Activation ener	av	(b) Internal energy	(c)	Translational e	nerav	(d) None
7.	The ca	talvst used fo	r the rea	action HCOOH \rightarrow H ₂				(4)
	(a)	Copper	(h)	Alumina	(c)	Silica	(d)	Iron
8	Sugar	solution hydro	nivses tr	alucose and fructos	o in the	presence of en	(a)	11011
0.	(a)	Urease	(h)	Invertase		Zymase	(d)	None
9	When	a reaction pro	ceeds in	sequence of stens t	he over	all rate is dete	rmined	hv
	(a)	Factor ston	cccus II	sequence of steps, t	(h)	Slowest sten	iiiiicu	by .
	(a)	Molecularity of	all stons		(d)	Order of differe	nt cton	
10		tance which n	nakos th	a catalyst more offer	(u)		in step	
10.		Inhibitor	(b)	Potardor		Promoter	(d)	
11	(a) Tf 750/	h of any given	(U)	of radioactive eleme	nt dicin	togratos in 60	minuto	s the half life of
11.	radioa	ctive element	ic		ant uisin	itegrates in ou	minute	
	(a)	20 minutes	(h)	30 minutes	(c)	40 minutes	(d)	25 minutes
12	with in	crease of 10%	(⁰) C tomno	rature the rate of re	action h	ecomes doubl	o This i	ncrease in rate of
12.	reactio	n is due to	e tempe			ecomes doubl		
	(a)	Decrease in the	• activati	on energy of reaction				
	(u) (h)	Decrease in nu	mher of	collision between the mo	hecules			
	(\mathbf{c})	Increase in act	ivation e	pergy of reactants	(d)	Increase in nur	nher of e	offective collision
13		it of rate cone	stant for	zero order reaction i	(u)	Increase in nur		
13.	(a)	dm ³ S ⁻¹	(h)	mole dm ⁻³ s ⁻¹	(c)	dm ³ mol ⁻¹ s ⁻¹	(d)	mole S ⁻¹
14	(u) If the	rate equation	of react	ion 2 $\Lambda \perp B \rightarrow Produc$	(C) +		(u)	
14.	Pate -	$- k [A]^2 [B] and$	d A is nr	a_{cont} in large excess	thon o	rder of reactio	n ic [,]	
	(a)		(h)	2	(c)		(d)	None of these
15	The ha	alf life neriod o	of ⁴ 4 Cie	5760 years 100mg (of samn	le of ¹⁴ C will	reduce	to 25mg in:
13.	The ne		6	S700 years. rooning (Jump	6	leadee	
	(a)	11520 vears	(h)	2880 years	(c)	57600 vears	(d)	5760 years
16		eray of activa	ted com		(0)	57000 years	(u)	5700 years
10.	(a)	Greater than th	ne reacta	nts and products	(h)	less than the r	eactante	and products
	(a)	Fould to the pr	oducte		(d)	Found to the re	actante	
17	Indica	to the enzyma	which	catalyses the followin				
±/.			1+200-					
	(a)		(h)	Zumace	(c)	Hroaco	(d)	Invertase
	101		101	CV1103C	11.1	ULUSC	(u <i>i</i>	111/01/030
	()		(-)	,	(-)		(-)	

PASS[®]Education system

PASS Entry Test Series

(ECAT, NUST-NET, NTS-NAT, COMSATS, FAST, PIEAS, GIKI, UHS, Army Medical, PIMS)

www.passpk.com

ANSWER KEY

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
b	b	b	b	а	а	а	b	b	С	b	d	b	а	а
16	17	18	19	20	21	22	23	24	25	26	27	28		
а	b	С	L C	С	b	С	d	а	а	b	d	С		
										in the later			-	

system

Prepared By: PASS Education System (Team) Revised By: Taimoor Hassan

34

PASS[®]Education system