PASS Education System

CHEMISTRY PART 1 COMPLETE MCQ's For:

(Board, UET-ECAT, NUST-NET, NTS-NAT)

Chapter #01

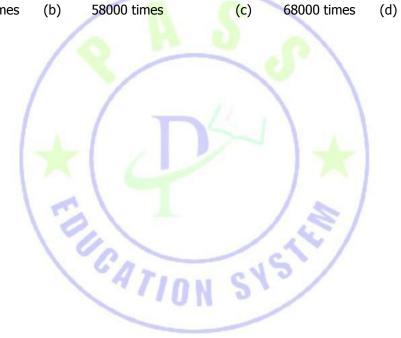
1.	Which	/hich of the following compounds has the highest % age of oxygen by weight?								
	(a)	CH₃–OH	(b)	C ₂ H ₅ –OH	(c)	HCOOH	(d)	H_2O		
2.	Formu	ıla mass of Mg	SO ₄ is g	/mole:					(GRW 06)	
	(a)	150	(b)	120	(c)	130	(d)	140		
3.	Electr	ometer is also	called:			101			(LHR 07)	
	(a)	Voltmeter	(b)	Avometer	(c)	Ion collector	(d)	Galvan	ometer	
4.	In cor	_		vapors are absorbed	by:	14/		HR 07, 1	4, FSD 08)	
	(a)	50% KOH	(b)	Mg (ClO ₄) ₂	(c)	NaOH	(d)	$MgCl_2$		
5.	_	t of peak in ma	_	trum shows:	31				(LHR 08)	
	(a)	Number of isoto	•	1011	(b)	Mass number				
	(c)	Relative abunda			(d)	Number of prof				
6.		•	-	g of N ₂ at S.T.P is:				-	, GRW 08)	
	(a)	2.24 dm ³	(b)	22.4 dm ³	(c)	1.12 dm ³	(d)	112 dm		
7.		ular mass of Ca		1 15 /					(LHR 09)	
	(a)	100	(b)	90	(c)	120	(d)	106		
8.		ntage of oxyge				ати		1	(LHR 09)	
_	(a)		, ,	88.89%	(c)	8.8%	(d)	9.8%		
9.		ting reactant is						(MTN 10	, GRW 09)	
	(a)		•	ity in grams as compare						
	(b)		•	ty in volume as compare						
	(c)		amount	of product	(d)	Gives minimum	amoun	t of prod		
10.		s isotopes:							(LHR 11)	
	(a)	7	(b)	9	(c)	11	(d)	5		
11.	•	ical formula of	•						(GRW 11)	
	(a)	CHO	(b)	$C_2H_4O_2$	(c)	CH ₂ O	(d)	$C_6H_{12}O_6$		
12.			_	8 grams of oxygen (C			<i>(</i> 1)		(GRW 11)	
	(a)	32	(b)	22	(c)	16	(d)	11		
13.	1 amu	is equal to:							(LHR 11)	

1

Prepared By: PASS Education System (Team)
For Online Entry Test Preparation: 0304-0666000
For Evening Coaching Contact (0304-4186308) Taimoor Hassan (CEO PASS)

(ECAT, NUST-NET, NTS-NAT, COMSATS, FAST, PIEAS, GIKI, UHS, Army Medical, PIMS)

www.passpk.com


- (a) 1.661×10^{27} kg (b) 1.661×10^{-26} kg (c) 1.661×10^{-24} kg (d) 1.661×10^{-24} g

 14. Cadmium has isotopes:

 (a) 9 (b) 16 (c) 17 (d) 18
- 15. An ordinary microscope can measure size of object up to: (FSD 07)
- (a) 100nm (b) 200 nm (c) 400 nm (d) 500 nm

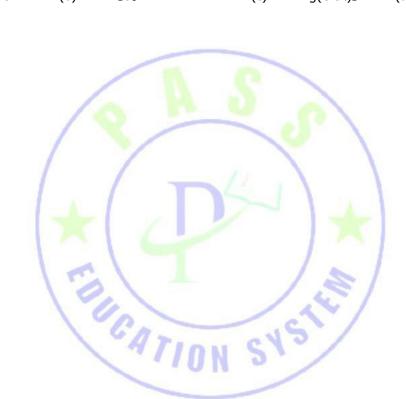
 16. How many times a hemoglobin molecule is heavier than hydrogen atom?

 (a) 38000 times (b) 58000 times (c) 68000 times (d) 88000 times

(ECAT, NUST-NET, NTS-NAT, COMSATS, FAST, PIEAS, GIKI, UHS, Army Medical, PIMS)

www.passpk.com

17.	Isoto	pes are sister	r atoms o	of same element v	with similar o	chemical prop	erties b	ut differ	ent:
	(a)	Atomic numb	ber		(b)	Atomic volum	e		(RWP 09)
	(c)	Atomic weigl	ht		(d)	Atomic struct	ure		
18.	The vo	lume occupie	d by 28 g	g of N ₂ atSTP is:					(RWP 10)
	(a)	22.414 dm ³	(b)	2.2414 dm ³	(c)	224.14 dm ³	(d)	1.12 dr	n^3
19.	One i	mole of SO ₂ co	ontains.						(SGD 09)
	(a)	$6.02 \times 10^{23} a$	atom of ox	kygen	(b)	18.1×10 ²³ mo	lecules o	f SO ₂	
	(c)	$6.02 \times 10^{23} \ a$			(d)	4 grams atom			
20.	The p	ressure of va	pors ma	intained in <mark>ioni</mark> zat	tion <mark>cha</mark> mbe	r <mark>of mass spe</mark>	ctromet	er durin	g isotopic
	analy	sis is:				10			(SGD 10)
	(a)	10 ³ torr	(b)	Around 10 ⁻⁵ torr	(c)	Around 10 ⁻⁷ to	orr	(d)	10 ⁻⁹ torr
21.	18.02	2 g of H₂O san	7			\ \			(MTN 07)
	(a)	1 mole of Hy			(b)	½ mole of ox			
	(c)	6.922×10^{23}		/	(d)	6.022×10 ²³ M	olecules	of H ₂ O	
22.	The p	ercentage of		14		3 100	1	<u>28</u>	(MTN 07)
	(a)	$\frac{14}{1} \times 100$	(b)	× 100	(c)	× 100	(d)	× 10	00
		34	1	1/		17	/	34	
23.	NH₃ bur		1	he following read		121		(1	1TN 07)
		107		= 2N _{2(g)} + 6H ₂ (107	10/			
	(a)			of NH ₃ will produce 1	/ ₂ moles of N ₂	-			
	(b)			duces 6 mole of N ₂	CY	3/			
	(c)	•		tion 2 moles of NH ₃	-				
	(d)	•		on, 2 moles of NH₃ a	and $40 \text{ g of } O_2$	are required			
24.		cular formula	-	to:					(MTN 09)
	(a)	n × empirica			(b)	n × compound		3	
	(c)	n × atomic fo		(6)	(d)	n × structural	formula		
25.				ent in 0.5 moles o	f Na is:				(MTN 09)
	(a)	1.0×10^{23}	(b)	6.02×10^{23}	(c)	2.04×10^{23}	(d)	3.01 ×	
26.		tomicity of N	H₃ is:	3 EU		all	(MT	N, DGK 08	B, BWP 11)
	(a)	One	(b)	Two	(c)	Three	(d)	Four	
27.				nbustion analysis	is:				(MTN 09)
	(a)	50% KOH	(b)	50% NaOH	(c)	Lime water	(d)	Mg (Cl	
28.	The r	number of iso	topes of	oxygen is:	ten			(B	WP 08, 09)
	(a)	One	(b)	Two	(c)	Four	(d)	Three	
29.	A lim	iting reactant	t is that o	one which:					(BWP 10)
	(a)	Gives least r	number of	moles of product	(b)	Gives greates	st numbe	r of mole	s of product
	(c)	Is left behin	d after co	mpletion of reaction	(d)	Is most costly	substance	es as comp	ared to others
30.	Atom	s of which or	ne of the	following elemen	nt have indep	endent existe	nce:		(BWP 10)
	(a)	Flourine	(b)	krypton	(c)	Oxygen	(d)	Nitroge	en
31.	Dem	oster's mass s	spectrom	eter was designe	d for the ide	ntification of	isotope	s of the	elements
	whic	h were availa	ble in:						(DGK 08)


3

Prepared By: PASS Education System (Team)
For Online Entry Test Preparation: 0304-0666000
For Evening Coaching Contact (0304-4186308) Taimoor Hassan (CEO PASS)

(ECAT, NUST-NET, NTS-NAT, COMSATS, FAST, PIEAS, GIKI, UHS, Army Medical, PIMS)

www.passpk.com

Gaseous state (b) Liquid state Solid state (a) (c) (d) Plasma state 32. One of the substances is used to absorb CO₂ gas in combustion analysis which is that substance: 50% KOH $Mg(ClO_4)_2$ (a) (b) Al_2O_3 (c) (d) SiO₂ (DGK 10)

PASS Education system

4

(ECAT, NUST-NET, NTS-NAT, COMSATS, FAST, PIEAS, GIKI, UHS, Army Medical, PIMS)

www.passpk.com

33.	Numl	ber of molecule	s in one	e dm³ of H₂0 is close t	:0:			LHR 1	3, DGK 10)
	(a)	6.022×10^{23}	(b)	$18\times6.022\times10^{23}$	(c)	55.5 × 6.022 ×	10 ²³	(d)	$\frac{18}{24} \times 10^{23}$
34.	The v	olume occupie	d by 32	g of O₂ at S.T.P is:					(DGK 11)
	(a)	22.414 dm ³	(b)	2.241 dm ³	(c)	224.414 dm ³	(d)	0.224	dm³
35.	Silve	r has isotopes:							(LHR 10)
	(a)	9	(b)	16	(c)	17	(d)	18	
36.	The n	number of mole	cules ir	one gram atom of C	O ₂ is:				(GRW 10)
	(a)	6.02×10^{23}	(b)	6.02×10 ²²	(c)	6.02×10^{27}	(d)	6.02×1	LO ²⁴
37.	Mass	of electron is:		0 '-		0			(LHR 11)
	(a)	9.1095×10 ³¹ kg	g (b)	9.1095×10 ⁻³¹ kg	(c)	9.1095×10 ⁻²⁷ k	kg (d)	9.1095	×10 ⁻³¹ g
38.	The n	number of mole	s of CO	which contain 8.0 g	ram of c	xygen is:		(LHR, G	RW 12, 14)
	(a)	0.25	(b)	0.50	(c)	1.0	(d)	1.50	
39.	How	many isotopes	are pre	sent in palladium?					(LHR 13)
	(a)	Four	(b)	Five	(c)	Six	(d)	Seven	
40.	The c	chemical analysi	is <mark>in w</mark> h	ich all the elements p	present	in a compound	are ide	entified:	(FSD 10)
	(a)	Quantitative a	analysis		(b)	Qualitative ana	alysis		
	(c)	Gravimetric an	alysis		(d)	none of these			
41.	Whic	h of the followi	ng elen	ent can exist in mon	oatomic	form			(MTN 11)
	(a)	Oxygen	(b)	Chlorine	(c)	Nitrogen	(d)	Helium	
				6/12	W	5 /			

ANSWER KEY

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
d	b	С	b	С	С	a	b	d	С	С	d	d	а	d
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
С	С	а	С	С	d	b	а	а	d	d	d	d	а	b
31	32	33	34	35	36	37	38	39	40	41		N IA		
С	a	С	a	b	a	b	a	С	b	d				

system

1.	In pa	per chromatography, the point to which t	he solvent	rises to maximum exte	nt is called:
	(a)	Eluent	(b)	Chromatogram	(GRW 07)
	(c)	Solvent front	(d)	Base line	
2.	Which	h one of the following substances is used	as decolor	izing agent: (GRW	08, 09,LHR 14)
	(a)	Animal charcoal	(b)	Conc. H ₂ SO ₄	
	(c)	CaCl ₂	(d)	Silica gel	
3.	The id	odine present in water can be separated	by which d	one of the following tecl	nniques: (GRW 08)
	(a)	Sublimation	(b)	Chromatography	
	(c)	Filtration	(d)	Solvent extraction	
4.	Chror	natography in which the stationary phase	e is liquid i	s called:	(LHR 07)
	(a)	Adsorption chromatography	(b)	Partition chromatography	
	(c)	Column chromatography	(d)	None of these	
5.	Rate	of filtration can be increased using:			(LHR 08, 11)
	(a)	Desiccator	(b)	Chromatographic tank	
	(c)	Cold finger	(d)	Suction flask	
6.	A con	nponent having small value of K (distribut	tion coeffic	cient) mostly remains in	: (LHR 08)
	(a)	Stationary phase	(b)	Mobile phase	
	(c)	Chromatographic tank	(d)	None of these	
7.		conversion of solid into vapors is called:			(GRW 09)
	(a)	Crystallization	(b)	Sublimation	
	(c)	Distribution	(d)	Vaporization	
8.		of the following is purified by sublimation	on:	·	(LHR 09)
	(a)	Naphthalene	(b)	Benzoic acid	
	(c)	Ammonium chloride	(d)	All of these	
9.	Subst	ance that does not show the process of s	ublimatior	ı is:	(GRW 11)
	(a)	K ₂ Cr ₂ O ₇	(b)	Iodine	
	(c)	Naphthalene	(d)	NH ₄ Cl	
10.	Solve	nt extraction is an equilibrium process ar	nd is contr	olled by:	
				9, SGD 09, 11, RWP 08, 11	, LHR 10, GRW 14)
	(a)	Distribution law	(b)	The amount of solvent us	ed
	(c)	Law of mass action	(d)	The amount of solute	
11.	Which	n is not used as drying agent in vacuum d	lesiccator i		(LHR 14)
	(a)	P_2O_5	(b)	CaCl ₂	
	(c)	$MgCl_2$	(d)	Silica gel	
12.	Whic	h chemical do not undergo sublimation?		(0	4TN 07, FSD 08)
	(a)	KMnO ₄	(b)	Naphthalene	
	(c)	NH ₄ Cl	(d)	Iodine	
13.	Iodin	e dissolves in water in the presence of KI	due to fo	rmation of which one of	the following
	specie				SD 10, LHR 13)
	(a)	I_2	(b)	I-	·
	(c)	I ₃ -	(d)	I4	
14.	The n	nost common solvent used in solvent extr			(FSD 11)
	(a)	Acetone	(b)	Ethanol	
	(c)	Rectified spirit	(d)	Diethyl ether	
15 .	Whic	h of the following substance shows the p	· ·	1	GD 10, BWP 08)
	(a)	Sodium chloride	(b)	Ammonium chloride	
	(c)	Copper chloride	(d)	Acetic acid	

16.		aper chromatography, the mobile phase		Water	(RWP 08)
	(a) (c)	Liquid ammonia Organic liquid	(b) (d)	None of these	
17.		comparative rate at which the solutes m	` '		s on:
17.	THE	comparative rate at which the solutes in	iove ili pape	(RWP 09, MTN 08, LHR 12	2, GRW 12,
	(a)	The size of paper	(b)	R _f values of solutes	
	(c)	Temperature of the experiment	(d)	Size of the chromatographic	tank used
18.	Whe	n hot saturated solution is cooled very s	lowly we ge	t: (RV	VP 10, DGK 1:)
	(a)	Medium size crystals	(b)	Large size crystals	
	(c)	Premature crystallization of the substance	(d)	No crystals	
19.		matography is the process which involv			
	(a)	Two mobile phases	(b)	A stationary phase and a mo	obile phase
20	(c)	Two stationary and two mobile phases Cl₄ solvent , I₂ shows :	(d)	Two stationary phases	(1/21/22)
20.		Blue colour	(b)	Brown colour	(MTN 07)
	(a) (c)	Pink colour	(b) (d)	Purple colour	
21.	` '	Irying Agents used in vacuum desiccato		rui pie coloui	(MTN 08)
21.	(a)		(b)	Silica gel	(MIII 08)
	(c)	Both a and b	(d)	None	
22.	` '	ratio of the solute in organic phase to th	` ,		08, 10, BWP 08)
	(a)	Rate constant	(b)	Equilibrium constant	, , ,
	(c)	Distribution coefficient	(d)	Arrhenius constant	
23.	` '	n an organic compound which is volatile	` '	ly unstable it is separated	by: (MTN 09)
	(a)	Crystallization	(b)	Sublimation	-
	(c)	Solvent extraction	(d)	Chromatography	
24.		ne can be purified by process of:			(MTN 09)
	(a)	Evaporation	(b)	Saponification	
	(c)	Sublimation	(d)	Crystallization	
25.		uble particles can be separated from a			(MTN 11)
	(a)	Sublimation	(b)	Solvent extraction	
26	(c)	Filtration	(d)	Crystallization	(DCK 00)
26.	-	ated extraction using small portion of s		Efficient	(DGK 08)
	(a) (c)	Accurate Slow	(b) (d)	Rapid	
27.	` ,	chromatography in which stationary pha	` ,	•	(DGK 08)
27.	(a)	Partition chromatography	(b)	Column chromatography	(Dak ob)
	(c)	Adsorption chromatography	(d)	All of these	
		In chromatography the stationary phase		(Do	GK 10, FSD 08)
		(a) Is a solid	(b)	Is a liquid	<i></i>
	(c)	May be liquid or gas	(d)	May be solid or liquid	
29.	The	drying agents used in vacuum desiccato			(LHR 12)
		(a) AgCl	(b)	NH ₄ Cl	
	(c)	CaCl ₂	(d)	AICI ₃	
		30. Gooch crucible is made of:	4.5		(LHR 14)
		(a) Clay	(b)	Asbestos	
24	(c)	Porcelain	(d)	Iron	
31.		ent extraction is a process:	41.5		(LHR 14)
	(a)	Exothermic	(b)	Endothermic	
	(c)	Equilibrium Purity of a substance is shocked by	(d)	Non-equilibrium	
	32.	Purity of a substance is checked by: (a) Crystallization	(h)	Sublimation	
	(c)	Solvent extraction	(b) (d)	Chromatography	
	(८)	Solvenic Catraction	(u)	Cinomatography	

ANSWER KEY

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
С	a	d	b	d	a	b	d	a	a	С	a	С	d	b
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
С	b	b	b	d	С	С	С	С	С	b	a	d	С	С
31	32		•	•	•	•	•	•			•	•		
С	d													

1.		eal gas consta			ressed i					(GRW 05)
2.	(a) Calorie	0.0821 e is equivalent	(b)	1.0821		(c)	82.21	(d)	82.1	(GRW 05)
۷.	(a)	0.4184 J	(b)	41.84 J		(c)	4.184 J	(d)	10.418	
3		ensity of a gas			ned by f		112015	(4)		06, FSD 11)
	(a)	$d = \frac{PM}{RT}$		$d = \frac{RT}{PM}$		(c)	$d = \frac{PM}{T}$	<u>R</u> (d)		<u>4T</u> R
4.	Which	gas has highe	st diffus	sion rate	e?					(LHR 06)
	(a)	SO ₂	(b)	Cl ₂		(c)	NH ₃	(d)	CO ₂	
5.	Mathe	matically Boyl	e's law i	is show	n as:					(LHR 07)
	(a)	PT = K	(b)	VT = K		(c)	$\frac{P}{T} = K$	(d)	PV = k	(
6.	Absolu	ite zero is equa	al to:	1			1	_		(GRW 07)
	(a)	273℃	(b)	−273°C		(c)	0°C	(d)	273 K	
7.		values of 'a' a		n Van de		-				
	(a)	Ideal (b) Nor	-	1	` ′	highly polar	(d)	Liquefied ea	isily	(LHR 08)
8.		nstant factor i					/ 3	= /		(GRW 08)
_	(a)	Volume	(b)	tempera		(c)	Pressur	e (d)	all of t	
9.		gas will diffus					Luch	(1)	CO	(GRW 09)
10	(a)	CO ₂	(b)	NH ₃	100	(c)	HCI	(d)	SO ₂	(1115.44)
10.	(a)	I l human body 37°C	(b)	98.6°C	//n	(c)	37°F	(d)	273 K	(LHR 11)
11.	` '	pressure of o			lunas i			07, DGK 08,		18 I HR 12)
	(a)	161	(b)	116	i luligo .	(c)	159	(d)	760	90, EIII(12)
12.		olar volume of			m at:					LO, RWP 09)
	(a)	S.T.P	(b)		nd 1 atm	` ,		l 2 atm (d)	273K	
13.		der of rate of o		A7 10 10 10	es NH₃,	-				
	(a)	$NH_3 > SO_2 > C$		(K)		(b)		$CO_2 > SO_2 >$		
4.4	(c)	$Cl_2 > SO_2 > CC$	All Inc.			(d)	NH ₃ > ($CO_2 > Cl_2 > S$		00 ECD 00)
14.	(a)	a is conductor Bad	(b)	_		(6)	Cood	(4)	None	08, FSD 09)
15.	` '	culate the pres			ne of a r	eal das und		(d) n-ideal con	Section 1997	tornato
13.		equation has						ii-ideai coii	uitions, ai	(FSD 10)
	(a)	General gas eq		от сторс		(b)		us equation		(10010)
	(c)	Clausius Clapey		ation	10	(d)		· Waal's equa	ition	
16.	If abso	olute temperat			doubled	and pressi	ure is redu	ced to one	half, the	volume of
	the gas							09, RWP 10	O, MTN, BW	P, DGK 11)
	(a)	Remain unchan	nged			(b)		e four times		
	(c)	Reduce to 1/4	_			(d)	Be doul			
4 -	_			+ w/b	ich tem	perature th	ie volume	ot a gas wi	II become	twice of
17.		re remaining	constan	t, at wii		P				
17.	what i	t is at 0°C.								(RWP 08)
17. 18.	what is		(b)	200°C		(c)	546 K	(d)	273 K	

(ECAT, NUST-NET, NTS-NAT, COMSATS, FAST, PIEAS, GIKI, UHS, Army Medical, PIMS)

www.passpk.com

19.	S.I ur	nit of pressure	e is:						(RWP 09)
	(a)	Torr	(b)	mm Hg	(c)	Nm ⁻²	(d)	Pound i	nch ⁻²
20.	The s	preading of fr	agrance	of scent in air is due	e to:			(SWL 1	5, RWP 11)
	(a)	Effusion	(b)	Diffusion	(c)	Osmosis	(d)	Density	
21.	The v	alue of R (in I	Vm K⁻¹ m	ıol ⁻¹) is:					(MTN 08)
	(a)	8.214	(b)	8.314	(c)	0.0321	(d)	62.4	
22.	Which			have the same num					(MTN 08)
	(a)			30 cm³ of N₂O	(b)	11.2 dm ³ of C		-	
	(c)	44 g CO ₂ and	l 11.2 dm	³ of CO	(d)	28.0g N₂ and	5.6 g O ₂	ofoxygen	
23.	The a	bsolute zero i	s:						(MTN 09)
	(a)	Attainable			(b)	May be attain	able		
	(c)	Un attainable	in gaseo	us state	(d)	My not be att	ainable		
24.	Stand	lard temperat	ure:						(MTN 09)
	(a)	0 _o C	/ (b)	75°C	(c)	273℃	(d)	100°C	
25.	The c	olour of NO ₂	jas is:			1			(BWP 08)
	(a)	Yellow	(b)	Green	(c)	Brown	(d)	Blue	
26.	Pilots	feel uncomfo	rtable b	reathing in unpressu	urized cal	bins:	1		(BWP 08)
	(a)	Due to high p		of CO ₂	(b)	Due to low pi			
	(c)	Due to fatigu	e		(d)	Due to low pi	essure of	f CO ₂	
27.	Plasm	nas are found	in every	thing from sun to:			1		(DGK 08)
	(a)	Atoms	(b)	Molecules	(c)	Electrons	(d)	Quarks	
28.	Which	n gas will diff		e rapidly among the	following				(DGK 10)
	(a)	N_2	(b)	H ₂	(c)	CO	(d)	NH₃	
29.	Whic	h gas diffuses	most ra	pidly?		-1			(LHR 06)
	(a)	HCI	(b)	NH ₃	(c)	SO ₂	(d)	CO_2	
				H FIG.	CA				

ANSWER KEY

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
а	С	а	С	d	b	а	С	b	а	С	b	b	С	d
16	17	18	19	20	21	22	23	24	25	26	27	28	29	
b	С	С	С	b	b	а	С	а	С	b	d	В	b	
			18	58		E		U(SS	it	10	n		

system

1.	Which one is the example of cubic crystals?				
	(a) Graphite (b) Sugar	(c)	Borax	(d)	Diamond
2.	The boiling point of the halogens:	u		. ,	
	(a) Increase down the group	(b)	Decrease down	n the gr	oup
	(c) Remains constant	(d)	can't be predic		•
3.	Vapor pressure of a liquid in a closed container				
	(a) Surface area of container	(b)	Temperature		
	(c) Amount of liquid	(d)	All of these		
4.	A crystal system in which all the axes and angle				
	(a) Tetragonal system	(b)	Monoclinic sys		
	(c) Triclinic system	(d)	Cubic system		
	5. At Murree hills water boils at:	(-)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	(a) 98°C (b) 100°C	(c)	0°C	(d)	50°C
6.	Coordination number of Na ⁺ ion in NaCl is:	(5)	121	(-)	
٠.	(a) One (b) Two	(c)	Four	(d)	Six
7.	Water may boil at 120°C when external pres		44/	(-)	(LHR 14)
	(a) 369 torr (b) 700 torr	(c)	760 torr	(d)	1489 torr
8.	Crystals formed due to London forces of intera		43 /	(4)	
٠.	(a) Ionic (b) Covalent	(c)	Molecular	(d)	Metallic
9.	Forces which are preset between ions and water	` '		(-)	
•	(a) Dipole-induced dipole forces	(b)	Dipole-dipole f	orces	
	(c) Ion dipole forces	(d)	London disper		ces
10	•				
	(a) Two (b) Three	(c)	Four	(d)	Five
	11. Transition temperature of tin is	(6)	1001	(4)	1110
	(a) 95.5°C (b) 13.2°C	(c)	0°C	(d)	128.5°C
	12. The crystal of diamond is:		STI	(4)	120.5 0
	(a) Ionic (b) Covalent	(c)	Molecular	(d)	Metallic
	13. Liquid hydrocarbon is:	(0)	Holecalar	(u)	-rictailic
	(a) Methane (b) Propane	(c)	Ethane	(d)	Hexane
	14. The example of hexagonal system is:			(-)	(LHR 11)
	(a) Sulphur (b) NaCl	(c)	Graphite	(d)	Diamond
	15. Hydrogen bonding is strongest in:			(-)	
	(a) HI (b) HBr	(c)	HCI	(d)	HF
	16. Allotropy is the property of:	(5)		(-)	(GRW 11)
	(a) Element (b) Compound	(c)	Mixture	(d)	Ions
	17. Ice occupies more space than liquid wat		Tilxedic	(u)	(LHR 10)
	(b(a) 109%	(c)	11%	(d)	12%
	18. Structure of ice is:	(c)	1170	(u)	12 70
	(a) Tetrahedral (b) Octahedral	(c)	Cubic	(d)	Triclinic
19.	In orthorhombic crystal, the unit cell dimension		30.2.0	(~)	
13.	(a) $a = b \neq c$ $\alpha = \beta = \gamma = 90^{\circ}$	(b)	$a \neq b \neq c \alpha =$	ß = ν =	900
	(c) $a \neq b \neq c \alpha = \beta = \gamma \neq 90^{\circ}$	(d)	$a \neq b \neq c \alpha =$		
20.	London dispersion forces are significant for:	(4)	3 + 5 + C u -	P 17	30
	(a) Polar molecules (b) Ionic solids	(c)	Metals	(d)	Non polar molecules
		(=)	. 100010	(4)	pola. molecules
	11				

PASS Entry Test Series (ECAT , NUST-NET , NTS-NAT , COMSATS, FAST , PIEAS , GIKI , UHS , Army Medical , PIMS)

www.passpk.com

21.				sotropic behavior in				_
22.	(a)	Diamond	(b) Fhigher	Graphite alkanes are greater	(C) r than the	KCI So of lower all	(d)	Ice
22.	that:	illing points of	iligilei	aikailes are greatei	i tilali tilo	ise of lower an	kanes t	iue to the reasons
	(a)	Higher alkanes	have gre	eater number of atoms	5			
	(b)			her alkanes is greater				
	(c)	Higher alkanes						
	(d)			eater hyd <mark>roge</mark> n bondin	ng			
23.		has maximum		_		1000	<i>(</i> 1)	4000
	(a)	4°C	(b)	0°C	(c)	100°C	(d)	10°C
24.				rphic solids and exis		Tuinanalfauna	(4)	Tatuananal
25	(a)	Cubic form	(b)	Orthorhombic form	(c)	Trigonal form	(d)	Tetragonal
25.	(a)	ansition temper 13.2°C	(b)	95.5°C	(c)	128 ℃	(d)	32.02°C
26.				er reduced pressure			(u)	32.02 C
_0.	(a)	Destructive dist		or reduced pressure	(b)	Vacuum distilla	ition	
	(c)	Fractional distil			(d)	Simple distillati		
27.		ructure of sodi	ium chle	oride is:				
	(a)	Body centered	cube		(b)	Face centered	cube	
	(c)	Simple cube			(d)	None	_	
28.				t between the ions				nown as:
	(a)	Dipole induced			(b)	Ion-dipole forc		
29.	(c)	Dipole-dipole for crystalline su		and hac	(d)	London dispers	SIOIT TOTC	es es
23.	(a)	Ionic crystals	ibstalice	and nas.	(b)	Metallic crystal	s	
	(c)	Covalent crysta	als	6/12		Molecular crystal		
30.				d has highest boilin			-	
	(a)	HCI	(b)	HBr	(c)	H ₂ O	(d)	Br ₂
31.	The nu	ımber of Na+ i		ch surround each C	l ⁻ ion in th	e NaCl crystal	is:	
	(a)	4	(b)	6	(c)	8	(d)	12
32.		s evaporate at	every t	emperature. When	the temp	erature becom	es con	stant for a liquid
	then: (a)	Pate of evanor	ation is o	reater than the rate o	f condens	ation		
	(b)			on is greater than the i				
	(c)			on and evaporation be				
	(d)	Depends upon					nr	1
33.				e electrical current l	ecause:	CLLI		
		Ions do not hav			(b)	Free electrons	are less	
	(c)			er of the ion is very hi				
24	(d)	•	t bonds a	are present in their str	ucture			
34.		hous means: Ordered	(h)	Arranged		Shaped	(d)	Shapeless
35.	(a) Polariz		(b) sure of	extent of distortion	(c)	Shapeu	(u)	Shapeless
55.	(a)	Qualitative	(b)	Quantitative	• (c)	Systematic	(d)	None of these
36.				f a solid during conv				
	(a)	Molar heat of v			(b)	Molar heat of s		ion
	(c)	Molar heat of fo			(d)	Enthalpy chang	ge	
37.			 .	s not form a molecu				
	<u>(</u> a)	Ice	(b)	Graphite	(c)	Iodine	(d)	Sugar
38.	-	ration causes:	(L)	Haatina	(-)	Dailin a	(-1)	:ti = 1:
20	(a)	Cooling	(b)	Heating	(c)	Boiling	(d)	irritation
39.	(a)	nd and graphi Isomorphism	te are e (b)	Polymorphism	(c)	Isomerism	(d)	Allotropy
40.				s are also called:	(0)	2000	(4)	ос. эр ј
. • •	(a)	London dispers			(b)	Debye forces		
				-	\~/	,		

Prepared By: PASS Education System (Team)

For Online Entry Test Preparation: 0304-0666000

For Evening Coaching Contact (0304-4186308) Taimoor Hassan (CEO PASS)

(ECAT, NUST-NET, NTS-NAT, COMSATS, FAST, PIEAS, GIKI, UHS, Army Medical, PIMS)

www.passpk.com

(c) Huckel forces (d) Electrostatic forces

41. The size of diameter of double helix of DNA is:

(a) 18-20 Å(b) 20-30 Å (c) 1-10 Å (d) 25-30 Å

(ECAT, NUST-NET, NTS-NAT, COMSATS, FAST, PIEAS, GIKI, UHS, Army Medical, PIMS)

www.passpk.com

42.														
	(a)	a = b	≠ C	(b)	a ≠ b =	= C	(c)	$\alpha = \beta = \gamma = 90^{\circ}$) (d)	None of these				
4	13. (Crystal	system	shown l	y dian	nond is:								
	•	,	Cubic	(b		etragonal	(c)	Monoclinic	(d)	Hexagonal				
44.	The	strong	gest acid	l among	haloge	en acids is:								
		(a)	HF		(b)	HCl	(c)	HBr	(d)	HI				
45.	The	numbe	r of Cl ⁻ ic	ons per i	unit cel	I of NaCl is:								
	(a)	8		(b)	6		(c)	4	(d)	2				
46.	ı woH	nuch n	nore spa	ice is oc	cupied	by water on	freezing:							
	(a)	9%		(b)	8%		(c)	7%	(d)	6%				
47.	Boilir	ng poir	nt of H₂C	at Mou	nt Ever	res <mark>t wo</mark> uld b	e:							
		(a)	98°C		(b)	100°C	(c)	101°C	(d)	69°C				
	48	8. A	llotropy	is the p	roperty	of:								
	(a)		ound	(b)	Elemer		(c)	Atoms	(d)	Mixture				
49.	Hydro	ogen b	onding i	s maxim	um for	1	1	1						
	(a)	Ethan	ol 🌈	(b)	Water		(c)	Benzene	(d)	Diethyl ether				
50). Th	ne exis	tence of	an elem	ent in	more than	one crystal	line forms:		(LHR 12, 13)				
	(a)	Allot	ropy	(b)	Isotro		(c)	Isomorphism	(d)	Polymorphism				
		51.	Dry ic	ce (Solid	CO ₂) i	s an example	e of solid:			(LHR 14)				
	(a)	Coval	ent	(b)	Molecu	ılar	(c)	Ionic	(d)	Metallic				
52.	Glyce		ecompos	es at its:				1 - 1		(LHR 14)				
	(a)	Meltir	ng point	(b)	Boiling	point	(c)	Freezing point	(d)	Critical point				
53.	Which	n one is	s the foll	lowing is	a psei	udo solid:		4		(LHR, GRW 14)				
	(a)	CaF_2		(b)	NaCl		(c)	Borax	(d)	Glass				

ANSWER KEY

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
d	a	b	С	а	d	d	С	С	a	b	b	d	С	d
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
а	a	С	b	d	b	b	а	b	С	b	b	b	а	С
31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
b	С	а	/d	b	С	b	а	d	b_	а	b	a	d	С
46	47	48	49	50	51	52	53		3 O					
а	d	b	b	а	b	b	d							

system

1.	Maximum number of electrons					(LHR 05, 14)
	(a) $2l+1$ (b)		(c) 2	2(2 / + 1)	(d)	2 (2 / – 1)
2.	An orbital can accommodate m					R 14, GRW 06)
2	(a) 10 (b)		(c)	b alastus n 3	(d)	2
3.	How many times the mass of n				(-1)	(GRW 07)
	(a) 1480 (b)	2000	(- /	200	(d)	1840
4.	Lyman Series is obtained wh (a) Ground level (b)	2 nd level		rrom nigner 6 3 rd level	e nergy i (d)	4 th level
5.	(a) Ground level (b) When 6d orbital is complete					
Э.	(a) 7f (b)	7s		7p	(d)	7d
6.	Lyman series occur in:		(0)	AP .	(u)	(SGD 10, LHR 07)
0.	(a) Visible region (b)	U.V. region	(c)	I.R. regi <mark>o</mark> n	(d)	None of these
_	A		(0)		, ,	
7.	<u>e</u> value for positive r <mark>ays i</mark> s ।	naximum for:		(L	HR 08 1	3, GRW 09, MTN 07)
	(a) Hydrogen (b)	Helium	(c) (Oxygen	(d)	Nitrogen
8.	According to Bohr's atomic r		d orbit c	of hydrogen at		(LHR 08)
	(a) 0.529 Å (b)	2.116 Å	(-)	4.0 Å	(d)	5.0 Å
9.	Lines of Paschen series are	produced when electro	_	from higher		
	(a) 1 st (b)	2 nd	(0)	3 rd	(d)	4 th (GRW 08)
10.	The electronic configuration	of an atom is 1s ² ,2s ²	,2p⁴. Th	e number of ເ	ınpaire	
	atom is:	. 7//NN '			<i>(</i> 1)	(GRW 08)
44	(a) 0 (b)	verse established b	(c)	4	(d)	6
11.	Negative charge on cathode			D A Millilean	(4)	(GRW 09)
12.	(a) William Crook (b) An orbital which is spherical	J. Perrin	(c)	R.A Millikan	(d)	Hittrof
12.	(a) s-orbital (b)	p-orbital	(6)	d orbital	(4)	(LHR 09) f-orbital
13.	Angstrom is the unit of:	p-orbital	(c)	d-orbital	(d)	(LHR 09)
13.	(a) time (b)	length	(c)	mass	(d)	frequency
14.	Mass of electron is:	icigui	(-)			(LHR 11)
	(a) $9.1095 \times 10^{31} \text{ kg}$		(b)	$9.1095 \times 10^{-31} \text{ k}$		(GIIKETT)
	(c) $9.1095 \times 10^{-27} \text{ kg}$	J LUU		9.1095×10^{-31} c		
15.	Neutron was discovered by:		(-)	3	,	(LHR 11)
	(a) Chadwick (b)	C.D. Anderson	(c) I	Rutherford	(d)	Goldstein
16.	Bambardment of α -particles	on Beryllium (Be) ator	n, emits	neutron and	this pro	ocess is called:
	(a) Natural radioactivity	SVSTA	(b)	Artificial radioad	tivity	(GRW 11)
	(c) Pauli's exclusion princip			Hund's rule		
17.	Balmer series in hydrogen s	pectrum lies in the reg	ion:			(FSD 07, GRW 11)
	(a) Ultraviolet (b)		(c)	Infrared	(d)	Microwave
18.	The value of Planck's consta					(LHR 10)
	(a) $6.62 \times 10^{-34} \text{ J.s}$ (b)	$6.62 \times 10^{-27} \text{ J.s}$	(c)	$6.62 \times 10^{-21} \text{ J.s}$	(d)	$6.62 \times 10^{-31} \text{ J.s}$
19.	Properties of waves are:			_		(FSD 09)
	(a) Wave length (b)			Frequency	(d)	All
20.	Which equation correctly re	-	_		iple?	(FSD 10)
	(a) $\Delta x \Delta P = \frac{h}{4\pi}$ (b)	$\Delta x \Delta P > \frac{h}{4\pi}$	(c)	$\Delta x \Delta P \ge \frac{h}{4\pi}$	(d)	$\Delta x \Delta P \leq \frac{h}{4\pi}$
	4π	1 π	(-)	4 π	(-)	4 π

PASS Entry Test Series (ECAT , NUST-NET , NTS-NAT , COMSATS, FAST , PIEAS , GIKI , UHS , Army Medical , PIMS)

www.passpk.com

	65	1 6	W 1	ww.passpk.co)M			
21.	Cu	ı + ¹ n	Cu +	"x" What is "x"			/I HP	14, BWP 11, FSD 10)
	29	0 2	<u> 19</u>		(-)	Data was		
	(a)	Electrons	(b)	Protons	(c)	Beta rays	(d)	Gamma ray
22.	The n	umber of neut	rons pre	esent in 19 K is:			(MTN	07, DGK 10, FSD 11)
	(a)	39	(b)	18	(c)	20	(d)	19
23.		4s orbital is co		, the electron goes in			()	(SGD 10)
	(a)	4p	(b)	3d	(c)	4d	(d)	4f
24.		_		series lies <mark>in t</mark> he regio		N	<i>(</i> 1)	(SGD 11)
25.	(a)	Visible	(b)	U.V. :als is dumb bell shap	(c)	Near I.R	(d)	Far I.R
25.	(a)	s-orbital	(b)	p-orbital	(c)	d-orbital	(d)	(RWP 08) f-orbital
26.				proton with the emiss				: (RWP 08)
	(a)	Positron	(b)	Neutrino	(c)	Beta Particle	(d)	Helium nucleus
27.		nass of an oxyg				1		(RWP 10)
	(a)	2.657×10^{-23} g		$2.657 \times 10^{23} \mathrm{g}$	(c)	16 g	(d)	32 g
28.		Magnetic quan		orbital are distinguis		Dringinal quant	um nun	(MTN 07)
	(a) (c)	Azimuthal quai			(b) (d)	Princip <mark>al qu</mark> ant Spin q <mark>uant</mark> um		
29.		nass of proton			(u)	Spiri quantum	Humber	(MTN 08)
	(a)	$+1.6 \times 10^{-19}$			(c)	1.672×10^{-27}	(d)	9.1×10^{-31}
30.		s model of ato		tradicted by:		131		(MTN 08)
	(a)	Photo electric			(b)	Pauli's exclusio		ple
31.	(c) K-se r	Heisenberg's u ies X-Rays hav			(d)	Aufbau princip	ie	(MTN 09)
J 2.	(a)	Longer	(b)	Smaller	(c)	Same	(d)	Different
32.		is the value of		for the 3s sub-shell?	0			(MTN 09)
33.	(a)	2 ode rays consis	(b)	1	(c)	5	(d)	3 (MTN 09)
<i>3</i> 3.	(a)	Electrons	(b)	Protons	(c)	Neutrons	(d)	Nucleon <u>s</u>
34.		-subshell cons	ists of:		(0)	Neatrons	(4)	(MTN 09)
25	(a)	5-orbitals	(b)	6-orbitals	(c)	7-orbitals	(d)	10-orbitals
35.	(a)	als having sam Hybrid orbitals		Valence orbitals	(c)	d-orbitals	(d)	(MTN 10, BWP 09) Degenerate orbitals
36.		ive rays were d			(c)	d Orbitals	(u)	(MTN 11)
	(a)	J.J. Thomson	(b)	Rutherford	(c)	William Crooks	(d)	E. Goldstein
37.	mass (a)	of one mole of 0.55 mg	(b)	n is: 0.184 mg	(c)	1.673 mg	(d)	(MTN 11) 1.008 mg
38.				nuthal quantum numb			(4)	(BWP 08)
	(a)	2	(b)	3	(c)	zero	(d)	1
39.				ne attraction of nucle		10°C************************************	(4)	(BWP 08)
40.	(a) In dis	Negative scharge tube ex	(b) «perime	Positive nt, the pressure of ga	(c) as was n	Zero naintained at:	(d)	None of these (BWP 10)
	(a)		0.1 tor		0.01 t		(d)	10 torr
41.	-			hen atoms are subje			ic field	
	(a) (c)	Zeeman effect Compton effect			(b) (d)	Stark effect Photoelectric e	ffect	(BWP 10, 11)
42.				series lies in ultraviol			iiect	(DGK 08)
	(a)	Lyman	(b)	Balmer	(c)	Paschen	(d)	Brackett
43.		hape of 'P' orbi		(b) Colombian	(-)	Demok hall	(-1)	(DGK 08)
44.	(a) Value	Double dumb-le of Rydberg's of		(b) Spherical	(c)	Dumb-bell	(d)	Complicated (DGK 10)
	(a)	$1.7904 \times 10^7 \text{ n}$	n ⁻¹		(b)	1.9768×10 ⁷ m ⁻¹	1	(Ban Ia)
4-	(c)	1.09678×10^{7}			(d)	$1.6 imes 10^7\mathrm{m}^{\text{-}1}$,
45.		the Azimuthal 5 values		m number is 3 then '7 values		have 2 values	(d)	(DGK 11) 3 values
	(a)	J values	(b)	7 values	(c)	∠ valu∈S	(u)	J values

www.passpk.com
Total number of spectral regions in sunlight spectrum is: 46.

(LHR 10)

(b)

7

(d) 8


(ECAT, NUST-NET, NTS-NAT, COMSATS, FAST, PIEAS, GIKI, UHS, Army Medical, PIMS)

www.passpk.com

ANSWER KEY

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
С	d	d	a	С	b	a	b	С	b	С	a	b	b	а
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
b	b	a	d	С	d	С	b	a	b	b	a	d	С	С
31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
d	d	a	а	d	d	a	d	С	C	а	а	С	С	b
1.0			•	-	•						•	•		

46

1.	Which (a)	of the follow	ing mole	ecules has a co	oordinat (c)	e covaler NH4Cl	nt bond	i? (d)	AlCl₃	(LHR 05)
2.		ngle formed ir	` '		(5)			(4)	7 0.15	(GRW 06)
4.	(a)	120°	(b)	180°	(c)	109.5°		(d)	107.5°	
3.				y obtained by t			of aro		107.5	(GRW 07)
	(a)	3 and 5	(b)	2 and 5	(c)	4 and 8		(d)	1 and 7	
4.		e moment of C	` '		(-)		_/	(-)		(GRW 07)
	(a)	1.84D	(b)	Zero D	(c)	0.95 D		(d)	2.2 D	
5.	` '	hvbridization		b <mark>ital</mark> s are orien	` '	anangle o	of:			(LHR 07)
	(a)	109.5°	(b)	120°	(c)	180°		(d)	0°	<u> </u>
6.	Which	of the follow	ing spec	ies has unpaire	ed élect	tron in ar	nti bon	ding m	olecular o	orbitals?
		- /				1	1			, BWP, LHR 08)
	(a)	H ₂	(b)	He₂	(c)	O_2^{+2}	1	(d)	N_2^{-2}	
7.				tain maximum		•	to:	_		(LHR 08)
	(a)	One	(b)	Two	(c)	Three	1 7	(d)	Four	
8.				e have dipole r				- 1		(GRW 08)
	(a)	Zero and 1.85		1.70 D and 1.8				ve zero	(d) N	None <u>of these</u>
9.				stability and l	least re					(GRW 07)
	(a)	They are very							hells are c	
	(c)	They are gase							nt in zero	
10.			_	electron in an		-	cular o		_	(GRW 09)
	(a)	O ₂ +2	(b)	N_2^{2-}	(c)	B ₂		(d)	F ₂	
11.				the formation		CCI		<i>(</i> 1)		1, GRW 09, 12)
4.0	(a)	NF ₃	(b)	CF ₄	(c)	CCl ₄		(d)	PCI ₅	(1115-00)
12.		ost stable ele			()			<i>(</i> 1)	Nama af i	(LHR 09)
40	(a)	Halogens	(b)	Lithium family	(c)	Noble ga	ases	(d)	None of t	
13.		ybridization o			()	2		<i>(</i> 1)		RW 09, LHR 14)
	(a)	sp	(b)	sp ²	(c)	sp ³		(d)	not hybri	
14.		ve ions are ca		-Anima	(-N	Malaada		(4)	Lludustad	(LHR 09)
15.	(a)	Cations	(b)	Anions H4 molecule is	(c)	Molecule	S	(d)	Hydrated	(LHR 11)
15.	(a)	Six	1			Five	7	(d)	Eight	
16.		I unit of dipo	(b)	Four	(c)	rive		(u)	Light	(LHR 10, 11)
10.	(a)	Joule	(b)	Debye	(c)	Coulomb	n meter	(d)	Nm ⁻²	(LIIK 10, 111)
17.	` '			nate covalent b				(u)	INIII -	(GRW 11)
17.	(a)	SO ₂	(b)	NH ₄ Cl	(c)	C ₂ H ₂	B	(d)	H ₂ O	(GRW II)
18.	` '		` ,	element in the			is.	(4)		(FSD, GRW 11)
10.	(a)	Oxygen	(b)	Nitrogen	(c)	Chlorine		(d)	Fluorine	(13D, GRW II)
19.		angle betwee		-	(0)	CHIOTHIC		(u)	ridornic	(LHR 10)
1 J.	(a)	105.5°	(b)	107.5°	(c)	92°		(d)	95°	(LIIK IO)
20.		nit of dipole m			(0)	<i>J</i> 2		(u)	55	(LHR 10)
	(a)	pm	(b)	Debye	(c)	mC		(d)	All	
21.		•		,			he vale			N 08, 09, GRW 10)
	(a)	Ionization ene		-		Electro-r				ion energy
22.		umber of elec			, (=)	Licculo I	.cgacivi	c, (u)	, torrizati	(GRW 10)
	(a)	4	(b)	12	(c)	6		(d)	8	
	(4)	•	(5)	-	(5)	J		(α)	5	

PASS Entry Test Series (ECAT , NUST-NET , NTS-NAT , COMSATS, FAST , PIEAS , GIKI , UHS , Army Medical , PIMS)

www.passpk.com

			vw.passp					
			as highest %				, 09, RWP 09, 11	, LHR 13)
(a)	HCI cometry of Be((b)	HBr	(c)	HF	(d)	HI	(FSD 07)
(a)	Linear	(b)	Plane triangular	r (c)	Tetrahedral	(d)	None of these	(130 07)
	Is having same	` '	•	(C)	retraneurai	(u)	None of these	(FSD 08)
(a)	Hybrid orbitals		Degenerate orb	itale	(c) Valence	e orbitals	(d) Molecular	
` '			id orbitals in s			. Oi bitais	(u) Moleculai	(FSD 08)
(a)	120°	(b)	107.5°	(c)	109.5°	(d)	104.5°	(10000)
	-				ecular orbitals			, SGD 11)
(a)	N_2^{-2}	(b)	O ₂ +2	(c)	B ₂	(d)	F ₂	,
The ge	ometry of eth	ane is:		·		Ì	(FSD 09	, LHR 13)
(a)	Tetrahedral	(b)	Trigonal planar	(c)	Linear	(d)	V-shaped	
The pa	ramagnetic pi	roperty	of oxygen is w	ell-expl	ained on the b	asis of:	•	(SGD 09)
(a)	VSEPR theory	(b)	VB theory	(c)	MO theory	(d)	None of these	
The bo	ond order of Na	accord	ing to MOtheo	ry is:		1		(SGD 09)
(a)	Zero	(b)	1	(c)	2	(d)	3	
Which	of the followi	-		o-ordina	te covalent bo	nd?		K, SGD 10)
(a)	NH ₄ Cl	(b)	NaCl	(c)	HCI	(d)	AICI ₃	
	rbon atom in (-		1 1		_	(SGD 10)
(a)	sp ³ hybridized	(b)	sp ² hybridized	(c)	sp hybridized	(d)	dsp ² hybridized	
					alent bond wit			(SGD 11)
(a)	NH ₃	(b)	H ₂ O	(c)	PH ₃	(d)	CH ₄	
			ies has configu					(RWP 08)
(a)	Na ⁺	(b)	Ca ⁺²	(c)	Cl	(d)	None of these	(D)((D 00)
-	bridization of		- H H 1800	(-)	CNS	(-1)	J3	(RWP 08)
(a)	sp	(b)	sp ²	(c)	sp ³	(d)	dsp ³	1 DWD 10)
	was proposed	-	Mannon		Vessel	(4)	_	1, RWP 10)
(a) Tl a a	Moseley	(b)	Werner	(c)	Kossel	(d)	Mullikan	(DWD 40)
	One sigma and		ogen molecule	(b)	One sigma and	two Di		(RWP 10)
(a) (c)	Three sigma or			(b)	Two sigma and			
	cometry of eth			(u)	rwo sigiria ariu	OHE FI		(RWP 11)
(a)	Tetrahedral	(b)	Trigonal planne	r(c)	Linear	(d)	V-shaped	(KWF II)
` '	os the ratio be			.1(0)	Lincai	(u)	V Shapea	(MTN 07)
(a)	1:2	(b)	2:1	(c)	2:3	(d)	3:2	
` '	theory was p					(4)	3,-	(MTN 07)
(a)	Nylholm and G			(c)	Lewis	(d)	Sidgewick	()
	lecule is paran			(-)		(-)		(MTN 07)
(a)	-	_	qual to the anti-	bonding	electrons			
(b)			nore than anti-bo					
(c)	-		ess than anti-bor	100				
(d)	It contains unp							
				zero dip	ole movemen	t becaus	se:	(MTN 07)
(a)	B is less electro			(b)	F is more electr			-
(c)	BF ₃ is pyramida	al while N	NH₃ is planar	(d)	NH ₃ is pyramida	ıl while E	BF₃ is trigonal pla	nar
The nu	ımber of bond	s in oxy	gen molecule i	s:				(MTN 08)
(a)	One sigma and	_	_	(b)	Two sigma bond	ds		
(c)	Two pi-bonds			(d)	None of these			
		ng mole	cule has zero d				(MTN_0	9, SWL 15)
(a)	NH ₃	(b)	CHCl₃	(c)	H ₂ O	(d)	BF ₃	
	two atoms for		d, energy is:	. ,		. ,		(MTN 09)
(a)	Released	(b)	Absorbed	(c)	Not changed	(d)	None of these	
	um electrone	` ,		` '	3	. ,		(MTN 09)
_			20					
			20					

Prepared By: PASS Education System (Team) For Online Entry Test Preparation: 0304-0666000

For Evening Coaching Contact (0304-4186308) Taimoor Hassan (CEO PASS)

(BWP 08)

(ECAT, NUST-NET, NTS-NAT, COMSATS, FAST, PIEAS, GIKI, UHS, Army Medical, PIMS)

www.passpk.com

(a) N (b) F (c) O (d) Cl

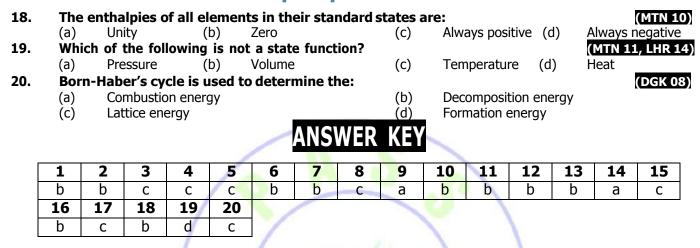
47.

The bond energy of hydrogen molecule is KJ/mole:
(a) 436 (b) 440 (c) 420 (d) 460

(ECAT, NUST-NET, NTS-NAT, COMSATS, FAST, PIEAS, GIKI, UHS, Army Medical, PIMS)

www.passpk.com

48.	The v	alue of dipole	moment	t of CS ₂ is:					(BWP 09)
	(a)	0.12D	(b)	Zero	(c)	1.61 D	(d)	0.95 D	
49.	The n	ature of bond	l in diamo	ond is:					(BWP 10)
	(a)	Electrovalent	(b)	Covalent	(c)	Metallic	(d)	Co-ordinate co	/alent
50.	Octet	rule is not fo	llowed in	formation of:					(BWP 10)
	(a)	NF_3	(b)	CF ₄	(c)	CCl ₄	(d)	PCI ₅	
51.	The s	hielding effec							(BWP 11)
	(a)					er the valence ele			
	(b)					<mark>r th</mark> e valence ele	ctrons		
	(c)			between nucleu					
	(d)	The increase	in attraction	on between nucl	leus and	inner electrons.			
52.	The e	lements havii	ng low io	<mark>niza</mark> tion energ	y are:				(DGK 08)
	(a)	Non-metal	(b)	Metals	(c)	Semi-metal	(d)	Metalloids	
53.	Whic	h of the follov	_	t isoelectronic	with r	est of the three			(DGK 08)
	(a)	K ⁺	(b)	Na ⁺	(c)	Cl ⁻	(d)	S ⁻²	
54.	Whic	h of the hydro	gen halid	des has the hig	_	ercentage of a		acter:	(DGK 09)
	(a)	HCI	(b)	HBr	(c)	HE	(d)	HI	
55.	The f	our equivalent	t sp³ hybr		space ar	e at an angel o	of:		(DGK 09)
	(a)	120°	(b)	107.5°	(c)	104.5°	(d)	109.5°	
56.				ds in Ethyne (C	-	are:	- 1		(DGK 10)
	(a)	Five	(b)		(c)	Two	(d)	Four	
57 .		-		ring of electro			5/		(LHR 12)
	(a)	Ionic bond	(b)	Covalent bond	` '	Co-ordinate co	valent b	ond (d)	All of these
58.				l takes place w		67			(LHR 13)
	(a)	Energy is abs		(b)			ercome f	orces of attractio	n
	(c)			equal to forces					
	(d)	Forces of attr	raction ove	ercome forces of	repulsion	n			


ANSWER KEY

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
С	b	d	b	b	Ρ	b	С	b	b	d	С	b	а	а
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
С	b	d	C	C	b	b	С	а	b	С	а	а	С	d
31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
а	b	d	a	С	d	b	а	С	а	d	d	а	d	а
46	47	48	49	50	51	52	53	54	55	56	57	58		
b	а	b	b	d	a	b	b	d	d	b	b	d		

1.	Spont	aneous reactio	ns are:							(LHR 05)
	(a)	Reversible	(b)	Irreversible	(c)	Non irre	eversible	(d)	None o	
2.		andard heat ch	_	occur at:					BWP 08,	GRW 06)
	(a)	25°C and 2 atm				(b)	298 K and 1 at			
_	(c)	25°C and 1 mm					73 K and 1 atm	1		
3.		$OH^- \rightarrow H_2O$ the O		n enthalpy fo	r reactio					(LHR 06)
	(a)	Heat of reaction				(b)	heat of format			
_	(c)	Heat of neutral				(d)	Heat of combu			
4.		et change in er		a cnemical re	eaction is	same				
	(a)	ctly. It is calle Henry's law	a: (b)	Charlie's law		(c)	Hess's law	(d)	Grahan	, BWP 10)
5.		nthalpy change	` '		ubstance			` '		
э.	called		wileii (one mole of Si	ubstance	: IS COIII	pietery burnt	III exce	55 UI UX	(LHR 07)
	(a)	Enthalpy of ato	mization	/		(b)	Enthalpy of ne	utralizati	on	(LIIK 07)
	(c)	Enthalpy of Cor				(d)	Enthalpy of for		011	
6.	` '	lpy change for			2O _{2(q)} →	` '			alpy of	(LHR 08)
	(a)	Formation	(b)	Combustion	(5)	(c)	Neutralization		Atomiza	
7.		ard enthalpies		asured at:		,	1 2 1	()		1, LHR 09)
	(a)	273 K	(b)	298K		(c)	373 K	(d)	All of th	
8.	The ex	cothermic proc	ess is:				AVI	DGK	(10, GRV	W, LHR 11)
	(a)	Evaporation	(b)	Sublimation		(c)	Respiration	(d)	Boiling	
9.		e function whi	ch desci	ribes togethe	r the inte	ernal en	ergy and the	product	of pres	
		e is called:		11	UN	9			_	(GRW 11)
	(a)	Enthalpy	(b)	Internal energ	•	(c)	Work	(d)	Free en	
10.		tal heat conte				(-)	T	(-1)	T	(LHR 10)
	(a)	Entropy	(b)	Enthalpy	: .	(c)	Temperature	(d)	Interna	l energy
11.		ever a reaction The heat is tran								(GRW 10)
	(a) (b)	The heat conte								
	(c)	The heat conte					roducts			
	(d)	The heat is trai						O M	h	
12.	` '	stant volume							(MTN 0	7, FSD 08)
	(a)	ΔΗ	(b)	ΔΕ		(c)	ΔΡ	(d)	ΔV	
13.		alue of ∆H bei		small, the ter	m ∆ (PV)		e neglected, fo		rocess ir	volving:
	(a)	Liquid and gas		•		(b)	Liquid and soli			(FSD 10)
	(c)	Solids and gase	es	CVIC		(d)	None of these			
14.	In a B	Somb calorimet	er, the i	reaction are c	arried ou	it at coi	nstant:			(SGD 10)
	(a)	Pressure	(b)	Work		(c)	Volume	(d)	None o	
15 .		ever a reaction							MTN 02	7, DGK 09)
	(a)	Heat is transfer								
	(b)	Heat is transfer								
	(c)	Heat content of		-						
	(d)	Heat content of						••	•	
16.		umber of funda		•	sterring			-		(MTN 08)
17	(a)	One	(b)	Two		(c)	Three	(d)	Four	(MTN 00)
17.		is product of fo				(-)	Disula server	(4)	D	(MTN 09)
	(a)	Volume	(b)	Time		(c)	Displacement	(d)	Pressur	е

(ECAT, NUST-NET, NTS-NAT, COMSATS, FAST, PIEAS, GIKI, UHS, Army Medical, PIMS)

www.passpk.com

1.	The value o	f pH and	pOH of	pure water a	t 25°C is	approx	imately:			(LHR 05)
	(a) 14	•	(b)	7	(c)	1 × 10 ⁻¹		(d)	1×10^{14}	
2.		constan	t fòr gas	eous equilibri	ium is re	present	ted by:	` ,		(DGK 10)
	(a) K _a		(b)	Kc	(c)	K _x	-	(d)	K_p	-
3.	Conjugate a	acid of a	very stro	ong base <mark>is r</mark> e	latively					GRW 06)
		strong ac		Weak acid	(c)		eak acid	(d)	strong a	cid
4.	Molarity of	pure wat	ter is:		` '			• •	(LH	R 06, 12)
	(a) 1	•	(b)	18	(c)	55.5		(d)	6	
5.		ssion of i		n of weak aci	` '	eak bas	se by adding o	` '	s own io	ns is
-	known as:		/				,			(GRW 07)
		er action /	(b)	Common ion e	effect	(c)	Buffer capacity	(d)	Ionizatio	n effect
6.	By adding N	NH4Cl to I		olution, the id	onizatio			` ,		(LHR 08)
	(a) Incre	eases	(b)	Decreases		(c)	Remain same	(d)		es 100 times
7.	pH of toma	to is:						` '		
	(a) 1.2		(b)	4.2		(c)	7.2	(d)	9.2	
8.	When K _c va	lue is sm	nall, the	equilibrium po	sition is	s:	1 - 1	(MTN 0	9, DGK 11	, GRW 08)
	(a) Towa	ards left	(b)	Towards right	(c)	Remair	s unchanged	(d)	None of	these
9.	A basic buff	fer soluti		e prepared by	mixing			` ,		(GRW 08)
				ith weak base		(b)	Weak base and	l its salt	with stror	
		-		with weak acid		(d)	Weak acid and			
10.	` '			H ⁺ ions cond						GRW 09)
	•	noles/dm ³		10 ⁻¹⁰ moles/dr			0.4 moles/dm ³	-		moles/dm ³
11.				nts and prod				(-)		(LHR 09)
	(a) Equa		(b)	Maximum	0.11	(c)	Minimum	(d)	Constan	
12.	The term pl					(5)			1, LHR 11	
		derson	(b)	Sorenson		(c)	Goldstein	(d)	Thomso	
13.				and K _c is give	en bv:	(-)		(~)		(LHR 11)
	(a) K _c =	_	(b)	$K_c = K_p Error$	_	(c)	$K_p = K_c (RT)^{\Delta n}$	(d)	$K_p = K_c$ (
14.	• •	r		ter is suppres		` '	φ πε(π)	(4)	.τρ .τ. ((GRW 11)
	(a) NaCl	-	(b)	NaCl	occub, .	(c)	KMNO ₄	(d)	KCl	
15.	` '	- 100 AU VO.	1000	ved by Guldb	era and	The second second	Control of the later of the lat			(LHR 10)
13.	(a) 1909		(b)		cig and	(c)	1846	(d)	1864	(LIIK 10)
16.	` '			nide gas is su	nresse		1010	(u)		(GRW 10)
10.	(a) KCI	or myarog	(b)	NaCl	JPI C33C	(c)	HCl	(d)	NH ₄ Cl	(GKW 10)
17 .	The pH of h	uman blo	` '	11461		(5)		` ′		, GRW 10)
	(a) 7.0	aman bi	(b)	4.0	-	(c)	6.5	(d)	7.4	, GRIF IU)
18.	` '	roduct of		vill increase if			0.5	(u)		0, LHR 13)
10.	_	ons are ad		in increase ii	(b)		are added		GKW I	0, LIIN 13)
	• •	perature is		d	(d)		OH-ions are add	dad in a	aual amou	nt
19.				u Jueous soluti o				ueu III e	•	9, LHR 14)
19.		reases (b)		ins constant (irct docr		n increases
20.	` '	` ,		r affects on e	,			iist ueti	cases trie	(MTN 08)
20.			_	i allects on e	quiiibiii			contratio	n	(MIIN US)
		nge in tem	•			(d)	Change in cond		11	
21		nge in Pres		alt discolves	in water	(d)	Change in volu a solution wi		roator H	nan 72
21.			_	CuSO ₄	ııı watel		Na ₂ CO ₃	(d)		(MTN 09)
	(a) NaCl		(b)	Cu3O4		(c)	ING2CO3	(u)	INI I4CI	(MIR US)

PASS Entry Test Series (ECAT , NUST-NET , NTS-NAT , COMSATS, FAST , PIEAS , GIKI , UHS , Army Medical , PIMS)

www.passpk.com

22.		рН (а)		lk is 6. 4	5, its p		l be: 7.5			(c)	7		(d)	no	ne of th	MTN 09)	
23.		` '	_	-				for th	e react			、2H	I is:	110		MTN 10)	
		(a)			n ³		Mole ⁻²		C . Cuc.	(c)		dm ⁻¹	(d)		ne of th		
24.						` '			avored	` ,			tion at				
		(a)								(b)			2NI	-		MTN 10)	
		(c)			<u></u> PCl₃						H ₂ +	•		-5		,	
25.		` '		•	can be		ted by	usina:							4	MTN 11)	
		(a)			s equati					(b)	Hend	derson's	equation	n	1	,	
		(c)		,	ie's equ					(d)		's equa					
26.	1	Ìn s	synth	esis of	ammo	nia by	Haber'	s proce	ess. Th	e optim	num co	ndition	for pre	ssure	is: (MTN 11)	
		(a)		50-160		. ,	170-20	0atm		(c)	200-	300 atn	n (d)	30	0-350 <u>a</u>	ıtm	
27.					pOH 🚽											3WP 08)	
		(a)		. 5456			An acid			(c)	Neut	ral	(d)	No	ne of <u>tl</u>		
28.								l₃ the o	catalys	t used i			1			3WP 08)	
20		(a)	F	_		(b)	Ni			(c)	Pt		(d)	Pd			
29.					luilibrit			an pre	aict:	(h)	The	ovtont o	of roactie	. n		BWP 09)	
		(a)			ction of ct of cat					(b) (d)	_		of reaction are		nt of ro	action	
30.		(c) The				,		ous sol	ution o	of HCl is		the un	ection ai	iu exte		3WP 10)	
30.		(a)	•	.0			2.7	ous soi	ution	(c)	2.0		(d)	1.5		SWP IU)	
31.								reactio	n. Low							łowever,	
J					ess ter							57				3WP 10)	
		(a)		00°C			300°C			(c)	400°	c /	(d)	50	0ºC ,_		
32.	•	The	unit	of equ	ilibriur						2				(I	3WP 11)	
										-92KJ					_	_	
		(a)			o unit			m ⁻³				+ ² dm ⁻⁶			ole ⁻² dm ⁻		
33.											-		s shifte		_		
24		(a) To .			directio	` '	Backwa			(c) I I be eq i		affected	l (d)	All	of thes	e DGK 08)	
34.					<u> </u>	_	actions	Nc allu	I Kp WII	_		2⊔.	2NI	J .		JGK U6)	
		(a) (c)		•	<u>—</u> гсіз D _{2. —}		(B)	1		(b) (d)			2NO	13			
35.								ted so	lution 4				of NaC	l ic·	7	OGK 10)	
JJ.		(a)		ncrease			Decrea		ution ((d)				
36.		` '		The street	er is:	-	200,00								c o. u		
		(a)		.0		(b)	6.0			(c)	6.2		(d)	7.0)		
37.					s actio			y:		()			()			SWL 15)	
		(a)	D	.C Dow	n and P	.Waage		-		(b)	(b) Gay-Lussaic and C.M Guldberg						
	((c)	C	.M Guld	lberg an	d P. Wa	age	10	J	(d)	Hand	derson a	and Le- (Chatelie	er		
							31	V.S									
							8	ANS	WER	KEY							
Γ	1		2	3	4	5	6	7	8	9	10	11	12	13	14	15	
L					•	⊢.	<u> </u>	─	_	−							

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
а	d	b	С	b	b	b	а	b	b	d	b	С	d	d
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
С	d	С	С	a	С	b	d	С	b	С	b	а	d	а
31	32	33	34	35	36	37								
С	d	b	d	b	С	С								

1.	Depression in the freezing						(LHR 05)	
_	(a) Molarity of solution	(b)	Molality of solu	ution(c)	Molality of	solvent	(d) None	
2.	Molarity of solution is exp						(GRW 07)	2
_	(a) Moles/kg	(b)	g.dm ⁻³		dm ³ . mole ⁻¹	L	(d) mole. dr	n-3
3.	The no. of moles of solute					(4)	(LHR 07)	
4.	(a) Molarity (b) Benzene – ether can form:	Molal	ity	(c)	Normality	(d)	Mole fraction (LHR 07)	
₹.	(a) Ideal solution (b)		ideal solution	(c)	Buffer solut	ion (d)	None of these	
5.	In a mixture of 28 grams of						(LHR 08)	
-	(a) 1.1	(b)	0.51	(c)	0.25		(d) 0.11	
6.	Which salt dissolves in wa	ter to fo	orm a solution		H greater th	nan 7.	(GRW 08)	
	(a) NaCl	(b)	CuSO ₄ (c)	Na ₂ CO	_	(d)	NH ₄ Cl	
7.	The number of moles of so						(GRW 09)	
•	(a) Molality (b)		rity(c)		raction	(d)	Normality	
8.	0.1 molar of solute dissolv						09, GRW 10)	
•	(a) 0.1 molar	(b)	1.0 molal(c)	0.5 mc	olai	(d)	none of these	
9.	Raoult's law is represented	d by:		ΛР	1 -	/	(LHR 09)	
	(a) $P = P^{o}X_1$	(b)	$\Delta P = P^{o}X_{2}(c)$	= >	(2	/ (d)	all of these	
	The amount of NaOH require			Po /		<u> </u>	(CDW 44)	
LO.		ea to pr (b)	15 (c)	20 20	solution in		25	
11.	(a) 10 10g NaOH dissolved per 250				5 /	(d)	(LHR 10)	
L.L.	(a) 0.5 M	(b)	1.0 M (c)	1.5 M	~ /	(d)	2.0 M	
12.	The azeotropic mixture of				deviation (
		, Joiut	H PHILARDING PROPERTY		actiation v	can be an	ounca at	
	-							`
	boiling point.						(FSD 07)
	boiling point. (a) Maximum	(b)	Minimum (c)	No sha	arp	(d)	(FSD 07 None of these	
13.	boiling point. (a) Maximum The hydration energy of B	(b) r⁻ ion is	Minimum (c)	No sha an F⁻ ior	arp 1:	(d)	(FSD 07 None of these (FSD 07)	
13.	boiling point. (a) Maximum The hydration energy of Boundary (a) Equal to	(b) r⁻ ion is (b)	Minimum (c) th Smaller than (No sha an F- ior (c)Greate	arp 1:		(FSD 07) None of these (FSD 07) None of these	
	boiling point. (a) Maximum The hydration energy of Be (a) Equal to The molal boiling point ele	(b) r- ion is (b) vation	Minimum (c) the Smaller than (depends upon.	No sha an F⁻ ior (c)Greate	arp 1: r than	(d) (d)	(FSD 07) None of these (FSD 07) None of these (FSD 08)	
13. 14.	boiling point. (a) Maximum The hydration energy of Boundary (a) Equal to The molal boiling point election (a) Nature of solvent (b)	(b) r- ion is (b) vation Vapo	Minimum (c) the Smaller than (depends upon. ur pressure of so	No sha an F - ior (c) Greate lution (c)	arp 1: r than Nature of s	(d) (d) olute (d)	(FSD 07) None of these (FSD 07) None of these (FSD 08) pH of solution	
13.	boiling point. (a) Maximum The hydration energy of Boundary (a) Equal to The molal boiling point election (a) Nature of solvent (b) Chemical used to protect a	(b) r ion is (b) vation Vapo	Minimum (c)th	No sha an F - ior (c) Greate lution (c)	arp 1: r than Nature of s	(d) (d) plute (d) or from fr	(FSD 07) None of these (FSD 07) None of these (FSD 08) pH of solution	
13. 14. 15.	boiling point. (a) Maximum The hydration energy of Bi (a) Equal to The molal boiling point ele (a) Nature of solvent (b) Chemical used to protect a (a) Phenol (b)	(b) r ion is (b) evation Vapor car by Ethylo	Minimum (c) the Smaller than (depends upon. ur pressure of so	No sha an F - ior (c) Greate lution (c)	arp 1: r than Nature of so n the radiat	(d) (d) olute (d)	(FSD 07) None of these (FSD 07) None of these (FSD 08) pH of solution eezing is:(FSD 09) Methanol	
13. 14.	boiling point. (a) Maximum The hydration energy of Boundary (a) Equal to The molal boiling point election (a) Nature of solvent (b) Chemical used to protect a	(b) r ion is (b) vation Vapo car by Ethylo	Minimum (c) the Smaller than (depends upon. or pressure of solution preventing the ene glycol (c)	No sha an F ⁻ ior (c) Greate lution (c)	nrp 1: r than Nature of so n the radiat KNO3	(d) (d) colute (d) cor from fr (d)	(FSD 07) None of these (FSD 07) None of these (FSD 08) pH of solution eezing is:(FSD 09) Methanol (FSD 10)	
13. 14. 15.	boiling point. (a) Maximum The hydration energy of Bacterian Equal to The molal boiling point electerian el	(b) rion is (b) vation Vapo car by Ethylo erty? ssure of	Minimum (c) the Smaller than (depends upon. or pressure of solution a solution	No sha an F- ior (c) Greate lution (c) e liquid i	nrp 1: r than Nature of so n the radiat KNO ₃ Change in t	(d) (d) cor from fr (d) cree energy	(FSD 07) None of these (FSD 07) None of these (FSD 08) pH of solution eezing is:(FSD 09) Methanol (FSD 10) of a solution	5]
13. 14. 15.	boiling point. (a) Maximum The hydration energy of Br (a) Equal to The molal boiling point ele (a) Nature of solvent (b) Chemical used to protect a (a) Phenol (b) Which is a Colligative prop (a) Change in vapour pre-	(b) r ion is (b) evation Vapor car by Ethylo erty? ssure of of solve	Minimum (c) the Smaller than (depends upon. of solution preventing the ene glycol (c) a solution of the sol	No sha an F- ior (c) Greate lution (c) e liquid i (b) (d)	nrp 1: r than Nature of so n the radiat KNO ₃ Change in 1 Lowering o	(d) (d) colute (d) cor from fr (d) ree energy	(FSD 07) None of these (FSD 07) None of these (FSD 08) pH of solution eezing is:(FSD 09) Methanol (FSD 10) of a solution essure of a solution)
13. 14. 15. 16.	boiling point. (a) Maximum The hydration energy of Br (a) Equal to The molal boiling point ele (a) Nature of solvent (b) Chemical used to protect a (a) Phenol (b) Which is a Colligative prop (a) Change in vapour pred (c) Heat of vapourization	(b) r ion is (b) vation Vapor car by Ethylo erty? ssure of of solve e in the	Minimum (c) the Smaller than (depends upon. ur pressure of solution a solution when the solution when	No sha an F- ior (c) Greate lution (c) e liquid i (b) (d)	nrp 1: r than Nature of so n the radiat KNO ₃ Change in 1 Lowering o	(d) (d) colute (d) cor from fr (d) ree energy	(FSD 07) None of these (FSD 07) None of these (FSD 08) pH of solution eezing is:(FSD 09) Methanol (FSD 10) of a solution essure of a solution)
13. 14. 15. 16.	boiling point. (a) Maximum The hydration energy of Bi (a) Equal to The molal boiling point ele (a) Nature of solvent (b) Chemical used to protect a (a) Phenol (b) Which is a Colligative prop (a) Change in vapour pred (c) Heat of vapourization The concentration of solution	(b) r ion is (b) vation Vapor car by Ethylo erty? ssure of of solve e in the	Minimum (c) the Smaller than (depends upon. ur pressure of solution a solution when the solution when	No sha an F- ior (c) Greate lution (c) e liquid i (b) (d) n it is in a	nrp 1: r than Nature of so n the radiat KNO ₃ Change in 1 Lowering o	(d) (d) colute (d) cor from fr (d) ree energy	(FSD 07 None of these (FSD 07) None of these (FSD 08) pH of solution eezing is:(FSD 09 Methanol (FSD 10) of a solution essure of a solution colid substance a (SGD 10))
13. 14. 15. 16.	boiling point. (a) Maximum The hydration energy of Bit (a) Equal to The molal boiling point elet (a) Nature of solvent (b) Chemical used to protect at (a) Phenol (b) Which is a Colligative property (c) Heat of vapourization The concentration of solution particular temperature is concentration.	(b) rion is (b) vation Vapor car by Ethylor ssure of of solve e in the called it (b) ed:	Minimum (c) th. Smaller than (depends upon. ur pressure of sol preventing the ene glycol (c) a solution nt in the solution e solution when s:	No sha an F- ior (c) Greate lution (c) e liquid i (b) (d)	nrp n: r than Nature of so n the radiat KNO ₃ Change in the Lowering of some	(d) (d) colute (d) cor from fr (d) cree energy f vapour pro with the s	None of these (FSD 07) None of these (FSD 08) pH of solution eezing is:(FSD 09) Methanol (FSD 10) of a solution essure of a solution essure of a solution (SGD 10) Mole fraction (RWP 08))
13. 14. 15. 16. 17.	boiling point. (a) Maximum The hydration energy of Br (a) Equal to The molal boiling point ele (a) Nature of solvent (b) Chemical used to protect a (a) Phenol (b) Which is a Colligative prop (a) Change in vapour pred (c) Heat of vapourization The concentration of solute particular temperature is c (a) Solubility Molar concentration is call (a) Active mass	(b) rion is (b) vation Vapor car by Ethylor serty? ssure of of solve e in the called it (b) ed: (b)	Minimum (c) the Smaller than (depends upon. or pressure of solution a solution in the solution e solution when s: Molarity Meight	No sha an F- ior (c) Greate lution (c) e liquid i (b) (d) n it is in o (c)	nrp n: r than Nature of so n the radiat KNO ₃ Change in the Lowering of some	(d) (d) colute (d) cor from fr (d) cree energy f vapour pro with the s	None of these (FSD 07) None of these (FSD 08) pH of solution eezing is:(FSD 09) Methanol (FSD 10) of a solution essure of a solution colid substance a (SGD 10) Mole fraction (RWP 08) None of these)
13. 14. 15. 16.	boiling point. (a) Maximum The hydration energy of Br (a) Equal to The molal boiling point ele (a) Nature of solvent (b) Chemical used to protect a (a) Phenol (b) Which is a Colligative prop (a) Change in vapour prec (c) Heat of vapourization The concentration of solut particular temperature is c (a) Solubility Molar concentration is call (a) Active mass An aqueous solution of point	(b) rion is (b) vation Vapor car by Ethylo serty? ssure of of solve e in the called it (b) ed: (b) tassium	Minimum (c) the Smaller than (depends upon. ur pressure of sol preventing the ene glycol (c) a solution a solution that in the solution when solution when solution when weight a acetate (CH ₃ O	No sha an F- ior (c) Greate lution (c) e liquid i (b) (d) n it is in (c) (c) (c) OCK) is:	nrp n: r than Nature of so n the radiat KNO ₃ Change in the Lowering of the company of the co	(d) (d) colute (d) cor from fr (d) ree energy f vapour pre with the s (d) (d)	None of these (FSD 07) None of these (FSD 08) pH of solution eezing is:(FSD 09) Methanol (FSD 10) of a solution essure of a solution colid substance a (SGD 10) Mole fraction (RWP 08) None of these (RWP 08))
13. 14. 15. 16. 17. 18.	boiling point. (a) Maximum The hydration energy of Br (a) Equal to The molal boiling point ele (a) Nature of solvent (b) Chemical used to protect a (a) Phenol (b) Which is a Colligative prop (a) Change in vapour prec (c) Heat of vapourization The concentration of solut particular temperature is c (a) Solubility Molar concentration is call (a) Active mass An aqueous solution of point (a) Acidic	(b) r ion is (b) evation Vapor Ethylo erty? ssure of of solve e in the called it (b) ed: (b) tassium (b)	Minimum (c) the Smaller than (depends upon. ur pressure of solution to the solution as solution when solution when weight acetate (CH ₃ O Basic	No sha an F- ior (c) Greate lution (c) e liquid i (b) (d) (it is in (c) (c) (c) (OK) is: (c)	nrp n: r than Nature of so n the radiat KNO ₃ Change in f Lowering or equilibrium Molality Mass Neutral	(d) (d) colute (d) cor from fr (d) free energy f vapour pre with the s (d) (d) (d)	None of these (FSD 07) None of these (FSD 08) pH of solution eezing is:(FSD 09) Methanol (FSD 10) of a solution essure of a solution colid substance a (SGD 10) Mole fraction (RWP 08) None of these (RWP 08) Amphoteric)
13. 14. 15. 16. 17.	boiling point. (a) Maximum The hydration energy of Bacterian Bac	(b) r ion is (b) vation Vapor Ethylo etry? ssure of of solve e in the called it (b) ed: (b) tassium (b)	Minimum (c) the Smaller than (depends upon. ur pressure of solution end in the solution end in the solution when solution when solution when solution the solution when solution when solution when solution the solution when solution solution. To solution. The smaller when solution when solution solution. The smaller when solution when solution.	No sha an F- ior (c) Greate lution (c) (b) (d) (d) (it is in (c) (c) (C) (C) (C) (C) (DK) is: (C) (DK) is:	nrp n: r than Nature of so n the radiat KNO ₃ Change in f Lowering o equilibrium Molality Mass Neutral rity of the s	(d) (d) colute (d) cor from fr (d) cree energy f vapour pro with the s (d) (d) (d) (d) colution is:	None of these (FSD 07) None of these (FSD 08) pH of solution eezing is:(FSD 09) Methanol (FSD 10) of a solution essure of a solution essure of a solution (SGD 10) Mole fraction (RWP 08) None of these (RWP 08) Amphoteric (RWP 09))
13. 14. 15. 16. 17. 18. 19.	boiling point. (a) Maximum The hydration energy of Br (a) Equal to The molal boiling point ele (a) Nature of solvent (b) Chemical used to protect a (a) Phenol (b) Which is a Colligative prop (a) Change in vapour prec (c) Heat of vapourization The concentration of solut particular temperature is c (a) Solubility Molar concentration is call (a) Active mass An aqueous solution of point (a) Acidic 2g of NaOH is dissolved in (a) 2.0 M	(b) rion is (b) vation Vapor Ethylo etry? ssure of of solve e in the called it (b) ed: (b) tassium (b) 500 cm	Minimum (c) the Smaller than (depends upon. ur pressure of solution ene glycol (c) a solution ent in the solution end solution when solution when selectate (CH ₃ O Basic 1.0 M	No sha an F- ior (c) Greate lution (c) (b) (d) (d) (c) (c) (c) (c) (c) he mola (c)	nrp n: r than Nature of so n the radiat KNO ₃ Change in f Lowering o equilibrium Molality Mass Neutral rity of the s 0.2	(d) (d) colute (d) cor from fr (d) cree energy f vapour pro with the s (d) (d) (d) colution is: (d)	None of these (FSD 07) None of these (FSD 08) pH of solution eezing is:(FSD 09) Methanol (FSD 10) of a solution essure of a solution essure of a solution (SGD 10) Mole fraction (RWP 08) None of these (RWP 08) Amphoteric (RWP 09) 0.1 M)
13. 14. 15. 16. 17.	boiling point. (a) Maximum The hydration energy of Br (a) Equal to The molal boiling point ele (a) Nature of solvent (b) Chemical used to protect a (a) Phenol (b) Which is a Colligative prop (a) Change in vapour pred (c) Heat of vapourization The concentration of solute particular temperature is of (a) Solubility Molar concentration is call (a) Active mass An aqueous solution of port (a) Acidic 2g of NaOH is dissolved in (a) 2.0 M Which one of the following	(b) rion is (b) vation Vapor tar by Ethylor serty? ssure of of solve e in the called it (b) ed: (b) tassium (b) 500 cm (b) g gives a	Minimum (c) the Smaller than (depends upon. ur pressure of solution ene glycol (c) a solution ent in the solution end solution when solution when selectate (CH ₃ O Basic 1.0 M	No sha an F- ior (c) Greate lution (c) (d) (d) (d) (c) (c) (c) (c) (d) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	nrp n: r than Nature of so n the radiat KNO ₃ Change in f Lowering o equilibrium Molality Mass Neutral rity of the s 0.2 ssolved in h	(d) (d) (d) cor from fr (d) cree energy f vapour pro with the s (d) (d) (d) (colution is: (d) H2O?MIN 0	None of these (FSD 07) None of these (FSD 08) pH of solution eezing is:(FSD 09) Methanol (FSD 10) of a solution essure of a solution essure of a solution (SGD 10) Mole fraction (RWP 08) None of these (RWP 08) Amphoteric (RWP 09) 0.1 M 7, RWP 11))

(ECAT, NUST-NET, NTS-NAT, COMSATS, FAST, PIEAS, GIKI, UHS, Army Medical, PIMS)

www.passpk.com

22.	In a	mixture of 7g of N₂ ar	ıd 8g of	O ₂ the mole fra	iction o	f O ₂ is:		(MTN 07)
	(a)	1	(b)	0.2	(c)	0.5	(d)	0.2
23.	Chee	se and butter are the	exampl	e of solution of	f:			(MTN 08)
	(a)	Liquid in liquid	(b)	Solid in solid	(c)	Liquid in solid	(d)	Solid in liquid
24.	A sol	ution containing 5.3 g	g of Na₂(CO₃ dissolved p	er dm³	is:		(MTN 09)
	(a)	1.0 M	(b)	0.1M	(c)	0.5 M	(d)	0.05 M
	25.	Water of crystalliza	tion of C	CuSO ₄ is:				(MTN 09)
		(a) five		(b) ten	(c)	two	(d)	six
26.	If w	e dissolve Na₂SO₄ in v	vater th	en thesolution	is:			(BWP 08)
	(a) Acidic	(b) Basic	(c)	Neutral	(d)	All of these
27.	Solut	ion containing relativ	ely low	er c <mark>once</mark> ntrat <mark>io</mark>	ns of so	ol <mark>utes</mark> are called	d:	(BWP 09)
	(a)	Dilute solutions			(b)	Concentrated s	solutions	
	(c)	Saturated solutions			(d)	Ideal solutions		
28.	The c	critical solution tempe	rature o	of phenol-wate	r syster	n is:		(DGK 08)
	(a)	35.6℃	(b)	49.5°C	(c)	57.8°C	(d)	65.9°C
29.	Whic	h one of the following	j is an id			1		(DGK 10)
	(a)	C ₂ H ₅ OH and H ₂ O	(b)	C ₆ H ₆ and CCl ₄	(c)	CHCl₃ and (CH₃) ₂ CO	(d)H ₂ O and HCl
30.	The r	nass of Glucose requi	red to p	repare 1 dm³ o	f 20%	glucos <mark>e soluti</mark> oi	n is:	(DGK 11)
	(a)	18g	(b)	180g	(c)	36g	(d)	200g

ANSWER KEY

1	2	3	4	5	6	7	8	9	10	11 /	12	13	14	15
b	d	a	а	C	C	а	b	d	a	b	d	b	а	b
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
٦	_		L .	_				d	a	•	а	٦	7	٦

1.	Redu	ction always ta	akes plac	ce:					LHR 05, 12)			
	(a)	At anode	-			(b)	At cathode					
	(c)	At both electro	odes			(d)	does not occ	ur at electrod	les			
2.	The e	lectrolyte KOH	l is used	in cell:					(GRW 06)			
	(a)	Lead accumula	ator			(b)	Ni – Cd cell					
	(c)	Alkaline batter	y			(d)	Silver oxide b	attery				
3.	In the	e reaction 2Fe	+ 3Cl ₂ —	→2FeCl ₃ :			(BV	/P 10, GRW	09, LHR 06)			
	(a)	Fe is reduced				(b)	(b) Fe is oxidized					
	(c)	Cl ₂ is oxidized				(d) None of these happens						
4.	Oxida	tion state of h	ydrogen	in CaH ₂ is:			1		(GRW 07)			
	(a)	+1	(b)	-1		(c)	+2 (d)	zero				
5.	Cu m	etal can be pu	rified in	electrolytic c	ell by ma	king th	e impure Cu	as:	(GRW 07)			
	(a)	Anode (b)	Cathod	le(c) Anod	de and Cat	hode	(d) Depe	nds upon na	ture of solution			
6.	Loss o	of electrons is	called:	100				1	(LHR 07)			
	(a)	Oxidation	(b)	Reduction	(c)	Hydrat	tion (d)	Dehydrat	ion			
7.	Fuel o	cells convert ch	nemical	energy into:		-			(GRW 07)			
	(a)	Heat energy	(b)	Light energy	(c)	Electric	cal energy (d)	Mechanica	energy			
8.	Electi	olysis is used	for:				181		(LHR 08)			
	(a)	Electroplating	(b)	Manufacture	of sodium	metal	(c) Manı	Ifacture of A	I (d) All of these			
9.	Nel	son's cell and	Down's	cell are exam	ple of:		1	(FSD 09	9, GRW 08)			
	(a)	Electrochemi		(b) Galv		(c)	Electrolytic co	ell (d) N	None of these			
10). T	he oxidation n	umber o	of Cr in K2Cr2C	0 ₇ is:	CA	(GRV	V 09, 10, LH	R 10,12,13)			
	(a)	+14	(b)	+12	(c)	+6	(d)	+13				
	11.		yte used	in fuel cell is		-			K, GRW 10)			
		a) Aqueous			` ,	KOH	(d)	NaNO₃				
	12.			electrolyte:					(LHR 11)			
	(8	,	-		s 0th(c)	Cu me	tal (d)	H_2SO_4				
13.		ition state of M		0 0 2 0				_	(LHR 10)			
	(a)	+4	(b)	+61	(c)	+5	(d)	-6				
14.		O ₂ the oxidation				+2			09, GRW 11)			
4-	(a)	+1-/4	(b)	3	(c)		(d)	-2	(CD) ((C)			
15.		rode potential						0.50	(GRW 11)			
4.6	(a)	0.00	(b)	1.00	(c)	0.01	(d)	0.50	0 1115 40V			
16.		ntion number o				_	(1)		9, LHR 10)			
	(a)	2	(b)	4	(c)	6	(d)	12				
17.		of Zn-Cu cell is		OFW		1.01/	(4)	1 10)/	(LHR 10)			
	` ,	0.0V	(b)	0.5 V	(c)	1.0V	(d)	1.10V				
18.		xidation numb				_	(1)	•	(FSD 07)			
	(a)	3	(b)	5	(c)	7	(d)	9				
19.		xidation poter	•	-	()	0.001/	(1)	0.001	(FSD 08)			
	(a)	0.02V	(b)	0.1V	(c)	0.00V	(d)	0.20V				
20	The !-			alialia dha -!		miest -	owies is af F		o ic:(FCD 40)			
20.		ighest reduction	•						e is:[(FSD110)]			
24	(a)	+3.87V	(b)	-3.87V	(c)	+2.87	V (d)	-2.87V	(ECD 44)			
21.		ntage of H ₂ SO					7 D	E00/	(FSD 11)			
	(a)	40%	(b)	25%	(c)	30%	(d)	50%				

PASS Entry Test Series (ECAT , NUST-NET , NTS-NAT , COMSATS, FAST , PIEAS , GIKI , UHS , Army Medical , PIMS)

www.passpk.com

(a) Ags0 (b) NiO2 (c) Cd (d) Zn According to classical concept, oxidation involves: (a) Addition of oxygen (c) Increase in oxidation state (d) All of above 24. In NasO2, the oxidation state of oxygen is: (a) −2 (b) +2 (c) −1 25. The extraction of Na-metal by electrolysis of fused NaCl is carried out in: (a) Down's cell (b) Fue cell (c) Nelson's cell (d) Voltaic cell 26. When one metal is deposited on the surface of the other by the process of electrical current, it is called: (a) Electrolysis (b) Electrolytic refining (c) Electroplating (d) Voltaic cell 27. Sulphur has the highest state in: (a) SO₂ (b) SO₃ (c) H₂S (d) H₂SO₃ (d) Voltaic cell 28. The cell in which electrical energy is converted into chemical energy is called: (a) SO₂ (b) SO₃ (c) H₂S (d) H₂SO₃ (a) Galvanic cell (b) Electrolytic cell (c) Fuel cell (d) Daniel cell 30. Electrochemical series is the arrangement of the electrodes in: (a) Precipitated (b) Reduced (c) Hydrolyzed (d) Oxidized 31. When aqueous NaCl is electrolyzed, which of the following get discharged at cathode: (MINO 9) 32. The oxidation number of chromium in Cr₂O₃ is: (a) H² (b) Na Reduction (c) Dissociation (d) Electrolysis (a) H² (b) Na Reduction (c) Dissociation (d) Electrolysis 33. Gain of electrons is called: (a) Oxidation (b) Reduction (c) Dissociation (d) Electrolysis 34. A decrease in oxidation number is called: (a) Oxidation (b) Reduction (c) Dissociation (d) Electrolysis 35. Electrolysis is the process in which a chemical reaction of Na metal: (a) Primary cell (b) Galvanic cell (c) Down's cell (d) Primary cell (d) Rion (d) Primary cell (d) Rion (d) Primary cell (d) Oxidation (d) Primary cells 36. Those cells which cannot be recharged are called: (a) Primary cell (b) Galvanic cell (c) Down's cell (d) Primary cells (a) Primary cell (b) Galvanic cell (c) Down's cell (d) Primary cells (a) Primary cells (b) Secondary cell (c) Primary cells (d) Primary cells (a) Primary cells	22.		Cathod	le in NI	CAD ce	ll is:			•				(MT	N 09, FS	SD 11,LI	HR 14)
23. According to classical concept, oxidation involves: (a) Addition of oxygen (b) Increase in oxidation state of oxygen is: (a) 24. In Na₂O₂, the oxidation state of oxygen is: (a) 22. (b) +2 (c) -1 (d) +1 25. The extraction of Na-metal by electrolysis of fused NaCl is carried out in: (a) Down's cell (b) Fuel cell (c) Nelson's cell (d) Voltaic cell 26. When one metal is deposited on the surface of the other by the process of electrical current, it is called: (a) Electrolysis (b) Electrolytic refining (c) Electrophiting (d) Electrolytic called: (a) SO₂ (b) SO₃ (c) H₂S (d) H₂SO₂ 27. Sulphur has the highest state in: (a) SO₂ (b) SO₃ (c) H₂S (d) H₂SO₂ (a) Galvanic cell (b) Electrolytic				_		` '								<u>'</u>	<i>'</i>	
(a) Addition of oxygen (b) Removal of hydrogen (c) Increase in oxidation state (d) All of above 24. In Na₂O₂, the oxidation state of oxygen is: (a) -2 (b) +2 (c) -1 (d) +1 25. The extraction of Na-metal by electrolysis of fused NaCl is carried out in: (a) Down's cell (b) Fuel cell (c) Nelson's cell (d) Voltaic cell (a) Down's cell (b) Fuel cell (c) Nelson's cell (d) Voltaic cell (c) Nelson's cell (d) Nelson's cell (d) Nelson's cell (d) Nelson's cell (d) Voltaic cell (c) Nelson's cell (d) Nelson's c						` '										
(c) Increase in oxidation state (d) All of above 1. Na202, the oxidation state of oxygen is: (a) -2 (b) +2 (c) -1 (d) +1 25. The extraction of Na-metal by electrolysis of fused NaCl is carried out in: (a) Down's cell (b) Fuel cell (c) Nelson's cell (d) Voltaic cell 26. When one metal is deposited on the surface of the other by the process of electrical current, it is called: (a) Electrolysis (b) Electrolytic refining (c) Electroplating (d) Electrolytic called: (a) Electrolysis (b) Electrolytic refining (c) Electroplating (d) Electrolytic (EWP,RWP 10). (a) SO2 (b) SO3 (c) H2S (d) H2SO3. 27. Sulphur has the highest state in: (a) SO2 (b) SO3 (c) H2S (d) H2SO3. (a) Galvanic cell (b) Electrolytic el	23.			_			ept, oxi	dation							(SC	GD 10)
24. In Na/O ₂ , the oxidation state of oxygen is: (a) -2							-at-a		. ,			iyaroger	1			
(a) -2 (b) +2 (c) -1 (d) +1 The extraction of Na-metal by electrolysis of fused NaCl is carried out in: (a) Down's cell (b) Fuel cell (c) Nelson's cell (d) Voltaic cell (a) Down's cell (b) Fuel cell (c) Nelson's cell (d) Voltaic cell (a) Electrolysis (b) Electrolytic refining (c) Electroplating (d) Electrolytic call (a) SO2 (b) SO3 (c) H:S (d) H:SO3 (all Galvarian) (a) SO2 (b) SO3 (c) H:S (d) H:SO3 (all Galvarian) (a) Galvanic cell (b) Electrolytic cell (c) Fuel cell (d) Daniel cell (a) Precipitated (b) Reduced (c) Hydrolyzed (d) Oxidized 7. In rusting of iron shown by the reaction 4Fe + 302—2Fo3, Iron is: (a) Precipitated (b) Reduced (c) Hydrolyzed (d) Oxidized 7. In rusting of iron shown by the reaction 4Fe + 302—2Fo3, Iron is: (a) Increasing order of reduction potentials (c) Increasing order of reduction potentials (d) there is not fixed arrangement (c) Increasing order of reduction potentials (d) there is not fixed arrangement (d) H' (b) Na' (c) OH (d) Cl 7. The oxidation number of chromium in Cr203 is: (a) H' (b) Na' (c) H6 (d) H12 7. The oxidation number of chromium in Cr203 is: (a) Oxidation (b) Reduction (c) Dissociation (d) Electrolysis (MIN 09) 7. Electrolysis is the process in which a chemical reaction takes place at the expense of: (MIN 10) 7. Electrolysis is the process in which a chemical reaction takes place at the expense of: (MIN 10) 7. Fuel cell converts chemical energy (c) Heat energy (d) Solar energy 7. Fuel cell converts chemical energy (c) Bert (d) Hat energy (d) Solar energy 7. Fuel cell converts chemical energy in the process in thich a chemical reaction takes place at the expense of: (MIN 10) 8. Which one of the following cells is used for the extraction of Na metal: (a) Nelson's cell (b) Galvanic cell (c) Down's cell (d) H6 energy 7. Fuel cell converts chemical energy in throw in the secondary cells (c) Tertiary cells (d) Primary cells 8. Which one of the following cells is used for the extraction of Na metal: (a) Primary cell (b) Secondary cells (c) Tertiary	24		` '					vaan ia		All Of	above				/ C/	CD 11)
25. The extraction of Na-metal by electrolysis of fused NaCl is carried out in: (a) Down's cell (b) Fuel cell (c) Nelson's cell (d) Voltaic cell	24.			-	oxidati			ygen is		1		(4)	. 1		(50	5D II)
(a) Down's cell (b) Fuel cell (c) Nelson's cell (d) Voltaic cell (CHTNOS) When one metal is deposited on the surface of the other by the process of electrical current, it is called: (a) Electrolysis (b) Electrolytic refining (c) Electroplating (d) Electrolytic refining (d) Electrolytic cell (d) SO ₂ (b) SO ₂ (c) H ₂ S (d) H ₂ SO ₃ called: (a) SO ₂ (b) SO ₂ (c) H ₂ S (d) H ₂ SO ₃ called: (a) Galvanic cell (b) Electrolytic cell (c) Fuel cell (d) Daniel cell (d) Precipitated (b) Reduced (c) Hydrolyzed (d) Oxidized (d) Daniel cell (d) Decreasing order of reduction potentials (d) Decreasing order of reduction potentials (d) Decreasing order of reduction potentials (d) There is not fixed arrangement (d) Decreasing order of reduction potentials (d) There is not fixed arrangement (d) There is not fixed arrangement (d) The oxidation number of chromium in Cr ₂ O ₃ is: (a) Heavillation number of chromium in Cr ₂ O ₃ is: (a) +3 (b) N ₂ (c) +6 (d) +12 (MTNOS) 34. Adecrease in oxidation number is called: (a) Oxidation (b) Reduction (c) Dissociation (d) Electrolysis (MTNOS) 35. Electrolysis is the process in which a chemical reaction takes place at the expense of: (MTNOS) 36. Those cells which cannot be recharged are called: (a) Primary cell (b) Secondary cell (c) Tertiary cell (d) None of these (EMP13) 39. Oxidation state of carbon in glucose (C ₆ H ₁ O ₆) is: (a) Zero (b) One (c) Two (d) Four (GRW12) (a) Zero (b) One (c) Two (d) Four (GRW12) (a) Zero (b) One (c) Two (d) Four (GRW12) (a) Primary cells (b) Secondary cell (c) Down's cell (d) The oxidation number of oxygen in thNOs is: (a) Fuel cell converts chemical energy (c)	25			_	of Na-			trolysis		_	l is car	` ,			(RV	VP ()8)
26. When one metal is deposited on the surface of the other by the process of electrical current, it is called: (a) Electrolysis (b) Electrolytic refining (c) Electroplating (d) Electrolytic (RWP09.11) 27. Sulphur has the highest state in: (a) SO₂ (b) SO₃ (c) H₂S (d) H₂SO₃ 28. The cell in which electrical energy is converted into chemical energy is called: (a) Galvanic cell (b) Electrolytic cell (c) Fuel cell (d) Daniel (d) Cr (d)	25.													aic cell		VI 00)
Called:	26.		` '						` '			(-)			al curre	ent. it is
(a) Electrolysis (b) Electrolytic refining (c) Electroplating (d) Electrolytic Sulphur has the highest state in: (a) SO ₂ (b) SO ₃ (c) H ₂ S (d) H ₂ SO ₃ The cell in which electrical energy is converted into chemical energy is called: (a) Galvanic cell (b) Electrolytic cell (c) Fuel cell (d) Daniel cell Precipitated (b) Reduced (c) Hydrolyzed (d) Oxidized 30. Electrochemical series is the arrangement of the electrodes in: (A) Precipitated (b) Reduced (c) Hydrolyzed (d) Oxidized 31. Clear chemical series is the arrangement of the electrodes in: (A) Increasing order of reduction potentials (b) Decreasing order of reduction potentials (c) Increasing order of oxidation reduction potential (d) there is not fixed arrangement 31. When aqueous NaCl is electrolyzed, which of the following get discharged at cathode: (MINOS) (a) H¹ (b) Na¹ (c) OH (d) C¹ 32. The oxidation number of chromium in Cr ₂ O ₃ is: (a) +3 (b) +4 (c) +6 (d) +12 (A) Oxidation (b) Reduction (c) Dissociation (d) Electrolysis 33. Gain of electrons is called: (a) Oxidation (b) Reduction (c) Dissociation (d) Electrolysis 34. A decrease in oxidation number is called: (a) Oxidation (b) Reduction (c) Dissociation (d) Electrolysis 35. Electrolysis is the process in which a chemical reaction takes place at the expense of: (MINOS) (a) Primary cell (b) Secondary cell (c) Tertiary cell (d) None of these 37. Fuel cell converts chemical energy (b) Electrical energy(c) Magnetic energy(d) Solar energy 38. Which one of the following cells is used for the extraction of Na metal: (a) Primary cell (b) Galvanic cell (c) Down's cell (d) All of these cells 39. Oxidation number of arbon in glucose (Cell 1206) is: (BOFK 11) (a) Figure (b) Cl² (c) Br¹ (d) Primary cells (CRW12) 41. The best reducing agent is: (a) Primary cells (b) Secondary cells (c) Tertiary cell (d) Primary cells (CRW12) 42. Galvanic cells which cannot be re-charged are called: (a) Diffused cells (b) Secondary cells (c) Tertiary cells (d) Primary cells (LHR 14)																
28. The cell in which electrical energy is converted into chemical energy (a) Galvanic cell (b) Electrolytic cell (c) Fuel cell (d) Daniel cell Daniel cell (a) Galvanic cell (b) Electrolytic cell (c) Fuel cell (d) Daniel cell Daniel cell (a) Precipitated (b) Reduced (c) Hydrolyzed (d) Oxidized (MTN 07) (a) Precipitated (b) Reduced (c) Hydrolyzed (d) Oxidized (MTN 07) (a) Precipitated (b) Reduced (c) Hydrolyzed (d) Oxidized (MTN 07) (a) Increasing order of reduction potentials (b) Decreasing order of reduction potentials (c) Increasing order of oxidation reduction potentials (d) there is not fixed arrangement of the reduction potentials (d) there is not fixed arrangement of the following set discharged at cathode: (MTN 08) 31. When aqueous NaCl is electrolyzed, which of the following get discharged at cathode: (MTN 08) (a) H⁺ (b) Na⁺ (c) OH (d) Cl (MTN 08) (a) H⁺ (b) Na⁺ (c) OH (d) Cl (MTN 08) (a) H⁺ (b) Na⁺ (c) OH (d) Cl (MTN 08) (a) H⁺ (b) Na⁺ (c) OH (d) Full (d) Electrolysis (d) Primary ed at cathode: (MTN 08) (a) Oxidation number of chromium in Cr₂O₃ is: (a) Oxidation (b) Reduction (c) Dissociation (d) Electrolysis (d) Oxidation (d) Electrolysis (d) Oxidation (d) Electrolysis is the process in which a chemical reaction takes place at the expense of: (MTN 09) 34. A decrease in oxidation number is called: (a) Oxidation (b) Reduction (c) Neutralization (d) Electrolysis is the process in which a chemical reaction takes place at the expense of: (MTN 10) 43. Chemical energy(b) Electrical energy(c) Heat energy (d) Solar energy (d) Solar energy 44. Teul (ell converts chemical energy into: (a) Primary cell (b) Secondary cell (c) Down's cell (d) None of these (BWP 13) 35. Electrolysis is the process in which a chemical energy (d) None of these (BWP 13) 46. Oxidation state of carbon in glucose (Cs H₁2Os) is: (a) Primary cell (b) Oxidation state of carbon in glucose (Cs H₁2Os) is: (a) Primary cell (b) Oxidation state of carbon in glucose (Cs H₁2Os) is: (a) Oxidation number of nitrogen in HNO₃ is: (b) Oxid				Electroly	/sis	(b)	Electro	olytic ref	ining (c) Electr	<mark>oplat</mark> ing	(d)	Elec			
28.	27.		Sulphu	r has th	e high	est sta						1			WP, RW	/P 10)
29. In rusting of iron shown by the reaction 4Fe + 30 ₂ → 2F ₂ O ₃ , Iron is: (a) Precipitated (b) Reduced (c) Hydrolyzed (d) Oxidized					/	` '			. ,			` '				
29. În rusting of iron shown by the reaction 4Fe + 30₂ → 2F₂0₃, Iron is: (a) Pricipitated (b) Reduced (c) Hydrolyzed (d) Oxidized 30. Electrochemical series is the arrangement of the electrodes in: (a) Increasing order of reduction potentials (c) Increasing order of reduction potentials (c) Increasing order of oxidation reduction potential (d) there is not fixed arrangement 31. When aqueous NaCl is electrolyzed, which of the following get discharged at cathode: MTN 08) (a) H⁺ (b) Na¹ (c) OH (d) C¹ 32. The oxidation number of chromium in Cr₂0₃ is: (a) H² (b) H² (c) H² (d) H¹2 33. Gain of electrons is called: (a) Oxidation (b) Reduction (c) Dissociation (d) Electrolysis 4. A decrease in oxidation number is called: (a) Oxidation (b) Reduction (c) Neutralization (d) e.m.f 55. Electrolysis is the process in which a chemical reaction takes place at the expense of: (MTN 09) 36. Those cells which cannot be recharged are called: (a) Primary cell (b) Secondary cell (c) Tertiary cell (d) None of these (a) Primary cell (b) Electrical energy(c) Magnetic energy(d) Sound energy 38. Which one of the following cells is used for the extraction of Na metal: (a) Nelson's cell (b) Gaivanic cell (c) Down's cell (d) Four 40. The oxidation number of nitrogen in HNO₃ is: (a) Zero (b) One (c) Two (d) Four 41. The best reducing agent is: (a) F¹ (b) C¹¹ (c) Br¹¹ (d) I¹¹ 42. Galvanic cells which cannot be re-charged are called: (a) Diffused cells (b) Secondary cells (c) Tertiary cells (d) Primary cells 43. Oxidation number of oxygen in OF₂ is: (a) Zero (b) -1/2 (c) +2 (d) -1 ANSWER KEY	28.														(MI	(N 07
A													Dan	iel cell	-	
30. Electrochemical series is the arrangement of the electrodes in: (a) Increasing order of reduction potentials (b) Decreasing order of reduction potentials (c) Increasing order of oxidation reduction potential (d) there is not fixed arrangement 31. When aqueous NaCl is electrolyzed, which of the following get discharged at cathode: (MTN03) (a) H* (b) Na* (c) OH (d) Cl* 32. The oxidation number of chromium in Cr2O3 is: (a) +3 (b) +4 (c) +6 (d) +12 33. Gain of electrons is called: (a) Oxidation (b) Reduction (c) Dissociation (d) Electrolysis 34. A decrease in oxidation number is called: (a) Oxidation (b) Reduction (c) Neutralization (d) e.m.f 35. Electrolysis is the process in which a chemical reaction takes place at the expense of: (MTN10) (a) Chemical energy(b) Electrical energy(c) Heat energy (d) Solar energy (a) Primary cell (b) Secondary cell (c) Tertiary cell (d) None of these 37. Fuel cell converts chemical energy into: (a) Heat energy (b) Electrical energy(c) Magnetic energy(d) Sound energy 38. Which one of the following cells is used for the extraction of Na metal: (a) Nelson's cell (b) Galvanic cell (c) Down's cell (d) All of these cells 39. Oxidation state of carbon in glucose (CsH12O6) is: (a) Zero (b) One (c) Two (d) Four (DGK 11) (a) Larroll (d) Interest (d) Primary cells 40. The oxidation number of nitrogen in HNO3 is: (a) F1 (b) Cl1 (c) Br1 (d) Interest (d) Primary cells 41. The best reducing agent is: (a) F2 (b) Cl2 (c) +2 (d) -1 42. Galvanic cells which cannot be re-charged are called: (a) Diffused cells (b) Secondary cells (c) Tertiary cells (d) Primary cells 43. Oxidation number of oxygen in OF2 is: (a) Zero (b) -1/2 (c) +2 (d) -1 44. ANSWER KEY	29.														(M	TN 07)
(a) Increasing order of reduction potentials (b) Decreasing order of reduction potentials (c) Increasing order of oxidation reduction potential (d) there is not fixed arrangement (a) H+ (b) Na+ (c) OH (d) C	20												Oxic	lized	47	-N 0=X
Column Increasing order of oxidation reduction potential (d) Column	30.												J			
31. When aqueous NaCl is electrolyzed, which of the following get discharged at cathode: [MTN08] (a)			: :		_											tiais
(a) H ⁺ (b) Na ⁺ (c) OH (d) CI	21															N OO)
32. The oxidation number of chromium in Cr ₂ O ₃ is: (a) +3 (b) +4 (c) +6 (d) +12 33. Gain of electrons is called: (a) Oxidation (b) Reduction (c) Dissociation (d) Electrolysis 34. A decrease in oxidation number is called: (a) Oxidation (b) Reduction (c) Neutralization (d) e.m.f 35. Electrolysis is the process in which a chemical reaction takes place at the expense of: (MTN 10) (a) Chemical energy(b) Electrical energy(c) Heat energy (d) Solar energy 36. Those cells which cannot be recharged are called: (a) Primary cell (b) Secondary cell (c) Tertiary cell (d) None of these 37. Fuel cell converts chemical energy into: (a) Heat energy (b) Electrical energy(c) Magnetic energy(d) Sound energy 38. Which one of the following cells is used for the extraction of Na metal: (a) Nelson's cell (b) Galvanic cell (c) Down's cell (d) All of these cells 39. Oxidation state of carbon in glucose (C ₆ H ₁₂ O ₆) is: (a) Zero (b) One (c) Two (d) Four 40. The oxidation number of nitrogen in HNO ₃ is: (a) +3 (b) -3 (c) -5 (d) +5 41. The best reducing agent is: (a) F ⁻¹ (b) Cl ⁻¹ (c) Br ⁻¹ (d) I ⁻¹ 42. Galvanic cells which cannot be re-charged are called: (a) Diffused cells (b) Secondary cells (c) Tertiary cells (d) Primary cells 43. Oxidation number of oxygen in OF ₂ is: (A) Zero (b) -1/2 (c) +2 (d) -1 ANSWER KEY	31.			-	Naci			ı, wilici			ilig gei	- A		Catilo	ue.	N 08)
(a) +3 (b) +4 (c) +6 (d) +12 Gain of electrons is called:	32.				numbe		457 466	n in Cra	(- /	OII	61	(4)	Ci		(M	TN 08)
33. Gain of electrons is called:	-						- 11	70		+6	J	(d)	+12			
(a) Oxidation (b) Reduction (c) Dissociation (d) Electrolysis MTN 09	33.			electro	ns is c	, ,		4		2		(-)			(M	TN 09)
(a) Oxidation (b) Reduction (c) Neutralization (d) e.m.f Electrolysis is the process in which a chemical reaction takes place at the expense of: (MTN10)			(a)	Oxidatio	n	(b)	Reduc	tion	(c)	Disso	ciation	(d)	Elec	trolysis		
35. Electrolysis is the process in which a chemical reaction takes place at the expense of: [MTN10] (a) Chemical energy(b) Electrical energy(c) Heat energy (d) Solar energy 36. Those cells which cannot be recharged are called: (a) Primary cell (b) Secondary cell (c) Tertiary cell (d) None of these 37. Fuel cell converts chemical energy into: (a) Heat energy (b) Electrical energy(c) Magnetic energy(d) Sound energy 38. Which one of the following cells is used for the extraction of Na metal: (a) Nelson's cell (b) Galvanic cell (c) Down's cell (d) All of these cells 39. Oxidation state of carbon in glucose (C ₆ H ₁₂ O ₆) is: (a) Zero (b) One (c) Two (d) Four 40. The oxidation number of nitrogen in HNO3 is: (a) +3 (b) -3 (c) -5 (d) +5 41. The best reducing agent is: (a) F ⁻¹ (b) Cl ⁻¹ (c) Br ⁻¹ (d) I ⁻¹ 42. Galvanic cells which cannot be re-charged are called: (a) Diffused cells (b) Secondary cells (c) Tertiary cells (d) Primary cells 43. Oxidation number of oxygen in OF ₂ is: (a) Zero (b) -1/2 (c) +2 (d) -1 ANSWER KEY	34.		A decre	ease in e	oxidati	on nun	nber is	called:						-	(M	TN 09)
(a) Chemical energy(b) Electrical energy(c) Heat energy (d) Solar energy 7. Those cells which cannot be recharged are called: (a) Primary cell (b) Secondary cell (c) Tertiary cell (d) None of these 7. Fuel cell converts chemical energy into: (a) Heat energy (b) Electrical energy(c) Magnetic energy(d) Sound energy 7. All of these cells 8. Which one of the following cells is used for the extraction of Na metal: (a) Nelson's cell (b) Galvanic cell (c) Down's cell (d) All of these cells 7. All of these cells 8. Oxidation state of carbon in glucose (C ₆ H ₁₂ O ₆) is: (a) Zero (b) One (c) Two (d) Four 9. All of these cells 9. Oxidation number of nitrogen in HNO3 is: (a) +3 (b) -3 (c) -5 (d) +5 1. The best reducing agent is: (a) F ⁻¹ (b) C ⁻¹ (c) Br ⁻¹ (d) I ⁻¹ 1. Calvanic cells which cannot be re-charged are called: (a) Diffused cells (b) Secondary cells (c) Tertiary cells (d) Primary cells 1. Zero (b) -1/2 (c) +2 (d) -1 ANSWER KEY 1. La 13 14 15												` ,				
36. Those cells which cannot be recharged are called: (a) Primary cell (b) Secondary cell (c) Tertiary cell (d) None of these 37. Fuel cell converts chemical energy into: (a) Heat energy (b) Electrical energy(c) Magnetic energy(d) Sound energy 38. Which one of the following cells is used for the extraction of Na metal: (a) Nelson's cell (b) Galvanic cell (c) Down's cell (d) All of these cells 39. Oxidation state of carbon in glucose (C ₆ H ₁₂ O ₆) is: (a) Zero (b) One (c) Two (d) Four 40. The oxidation number of nitrogen in HNO3 is: (a) +3 (b) -3 (c) -5 (d) +5 41. The best reducing agent is: (a) F ⁻¹ (b) C ⁻¹ (c) Br ⁻¹ (d) I ⁻¹ 42. Galvanic cells which cannot be re-charged are called: (a) Diffused cells (b) Secondary cells (c) Tertiary cells (d) Primary cells 43. Oxidation number of oxygen in OF ₂ is: (a) Zero (b) -1/2 (c) +2 (d) -1 ANSWER KEY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	35.										-			-		V10)
(a) Primary cell (b) Secondary cell (c) Tertiary cell (d) None of these 37. Fuel cell converts chemical energy into: (a) Heat energy (b) Electrical energy(c) Magnetic energy(d) Sound energy 38. Which one of the following cells is used for the extraction of Na metal: (a) Nelson's cell (b) Galvanic cell (c) Down's cell (d) All of these cells 39. Oxidation state of carbon in glucose (C ₆ H ₁₂ O ₆) is: (a) Zero (b) One (c) Two (d) Four 40. The oxidation number of nitrogen in HNO ₃ is: (a) +3 (b) -3 (c) -5 (d) +5 41. The best reducing agent is: (a) F ⁻¹ (b) Cl ⁻¹ (c) Br ⁻¹ (d) I ⁻¹ 42. Galvanic cells which cannot be re-charged are called: (a) Diffused cells (b) Secondary cells (c) Tertiary cells (d) Primary cells 43. Oxidation number of oxygen in OF ₂ is: (a) Zero (b) -1/2 (c) +2 (d) -1 ANSWER KEY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15											energy	(d)	Sola	r energy		
37. Fuel cell converts chemical energy into:	36.											(10)		6.11		VP 09)
(a) Heat energy (b) Electrical energy(c) Magnetic energy(d) Sound energy 38. Which one of the following cells is used for the extraction of Na metal: (a) Nelson's cell (b) Galvanic cell (c) Down's cell (d) All of these cells 39. Oxidation state of carbon in glucose (C ₆ H ₁₂ O ₆) is: (a) Zero (b) One (c) Two (d) Four 40. The oxidation number of nitrogen in HNO ₃ is: (a) +3 (b) -3 (c) -5 (d) +5 41. The best reducing agent is: (a) F ⁻¹ (b) Cl ⁻¹ (c) Br ⁻¹ (d) I ⁻¹ 42. Galvanic cells which cannot be re-charged are called: (a) Diffused cells (b) Secondary cells (c) Tertiary cells (d) Primary cells 43. Oxidation number of oxygen in OF ₂ is: (a) Zero (b) -1/2 (c) +2 (d) -1 ANSWER KEY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	27		` '						(c)	Tertia	ary cell	(a)	Non	e or tne		WD 443
38. Which one of the following cells is used for the extraction of Na metal: (a) Nelson's cell (b) Galvanic cell (c) Down's cell (d) All of these cells 39. Oxidation state of carbon in glucose (C ₆ H ₁₂ O ₆) is: (a) Zero (b) One (c) Two (d) Four 40. The oxidation number of nitrogen in HNO3 is: (a) +3 (b) -3 (c) -5 (d) +5 41. The best reducing agent is: (a) F ⁻¹ (b) Cl ⁻¹ (c) Br ⁻¹ (d) I ⁻¹ 42. Galvanic cells which cannot be re-charged are called: (a) Diffused cells (b) Secondary cells (c) Tertiary cells (d) Primary cells 43. Oxidation number of oxygen in OF ₂ is: (a) Zero (b) -1/2 (c) +2 (d) -1 ANSWER KEY	3 /.								av(c)	Magn	otic one	ray(d)	Sou	nd onor		WP 11)
(a) Nelson's cell (b) Galvanic cell (c) Down's cell (d) All of these cells 39. Oxidation state of carbon in glucose (C ₆ H ₁₂ O ₆) is: (a) Zero (b) One (c) Two (d) Four 40. The oxidation number of nitrogen in HNO ₃ is: (a) +3 (b) -3 (c) -5 (d) +5 41. The best reducing agent is: (a) F ⁻¹ (b) Cl ⁻¹ (c) Br ⁻¹ (d) I ⁻¹ 42. Galvanic cells which cannot be re-charged are called: (a) Diffused cells (b) Secondary cells (c) Tertiary cells (d) Primary cells 43. Oxidation number of oxygen in OF ₂ is: (a) Zero (b) -1/2 (c) +2 (d) -1 ANSWER KEY	38													ilu energ		SK 08)
39. Oxidation state of carbon in glucose (C ₆ H ₁₂ O ₆) is: (a) Zero (b) One (c) Two (d) Four 40. The oxidation number of nitrogen in HNO ₃ is: (a) +3 (b) -3 (c) -5 (d) +5 41. The best reducing agent is: (a) F ⁻¹ (b) Cl ⁻¹ (c) Br ⁻¹ (d) I ⁻¹ 42. Galvanic cells which cannot be re-charged are called: (a) Diffused cells (b) Secondary cells (c) Tertiary cells (d) Primary cells 43. Oxidation number of oxygen in OF ₂ is: (a) Zero (b) -1/2 (c) +2 (d) -1 ANSWER KEY	50.													f these	cells	3K 06)
(a) Zero (b) One (c) Two (d) Four 40. The oxidation number of nitrogen in HNO3 is: (a) +3 (b) -3 (c) -5 (d) +5 41. The best reducing agent is: (a) F ⁻¹ (b) Cl ⁻¹ (c) Br ⁻¹ (d) I ⁻¹ 42. Galvanic cells which cannot be re-charged are called: (a) Diffused cells (b) Secondary cells (c) Tertiary cells (d) Primary cells 43. Oxidation number of oxygen in OF ₂ is: (a) Zero (b) -1/2 (c) +2 (d) -1 ANSWER KEY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	39.										. 5 00	(4)	7 0			GK 11)
40. The oxidation number of nitrogen in HNO ₃ is: (a) +3 (b) -3 (c) -5 (d) +5 41. The best reducing agent is: (a) F ⁻¹ (b) Cl ⁻¹ (c) Br ⁻¹ (d) I ⁻¹ 42. Galvanic cells which cannot be re-charged are called: (a) Diffused cells (b) Secondary cells (c) Tertiary cells (d) Primary cells 43. Oxidation number of oxygen in OF ₂ is: (a) Zero (b) -1/2 (c) +2 (d) -1 ANSWER KEY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15								16	and the same	-		(d)	Four	-		<u> </u>
(a) +3 (b) -3 (c) -5 (d) +5 41. The best reducing agent is: (a) F ⁻¹ (b) Cl ⁻¹ (c) Br ⁻¹ (d) I ⁻¹ 42. Galvanic cells which cannot be re-charged are called: (a) Diffused cells (b) Secondary cells (c) Tertiary cells (d) Primary cells (a) Zero (b) -1/2 (c) +2 (d) -1 ANSWER KEY [DGK 11] (GRW12) (GRW12) (LHR 14) (1)	40.		` '		numbe			in HNO				()			(DO	GK 11)
(a) F ⁻¹ (b) Cl ⁻¹ (c) Br ⁻¹ (d) I ⁻¹ 42. Galvanic cells which cannot be re-charged are called: (a) Diffused cells (b) Secondary cells (c) Tertiary cells (d) Primary cells 43. Oxidation number of oxygen in OF ₂ is: (a) Zero (b) -1/2 (c) +2 (d) -1 ANSWER KEY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15			(a)	+3		(b)	-3	1	(c)	-5		(d)	+5			<u>-</u>
42. Galvanic cells which cannot be re-charged are called: (a) Diffused cells (b) Secondary cells (c) Tertiary cells (d) Primary cells 43. Oxidation number of oxygen in OF ₂ is: (a) Zero (b) -1/2 (c) +2 (d) -1 ANSWER KEY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	41.		The be		cing ag	ent is:									(DO	GK 11)
(a) Diffused cells (b) Secondary cells (c) Tertiary cells (d) Primary cells (a) Zero (b) -1/2 (c) +2 (d) -1 ANSWER KEY [LHR 14] ANSWER KEY				-								(d)	I^{-1}			
43. Oxidation number of oxygen in OF ₂ is: (a) Zero (b) -1/2 (c) +2 (d) -1 ANSWER KEY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	42.															RW12)
(a) Zero (b) -1/2 (c) +2 (d) -1 ANSWER KEY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15									s (c)	Tertia	ary cells	(d)	Prim	ary cell		
ANSWER KEY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	43.				iber of			2 IS :				<i>(</i> 1)			(Lli	IR 14)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15			(a)	Zero		(b)	-1/2		(c)	+2		(d)	-1			
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15								ANS	WFR	KFY						
			1			T	1					_		·		-
b c b b a a c d c c c b b a						5	6									15
		0	С	b	b	a	a	С	d	С	С	С	С	b	b	a

30

(ECAT, NUST-NET, NTS-NAT, COMSATS, FAST, PIEAS, GIKI, UHS, Army Medical, PIMS)

www.passpk.com

ĺ	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
	С	d	С	С	С	С	b	d	С	а	С	b	b	d	a
ĺ	31	32	33	34	35	36	37	38	39	40	41	42	43		
Ī	а	a	b	b	b	а	b	С	а	d	d	d	С		

1.	Larger	the surface a	area of tl	he reactant molecul	les:				
	(a)	Lower will be	the rate c	of reaction	(b)	Higher will be	the rate	of reactio	n
	(c)			nains unaffected	(d)	The rate may	increase	or decrea	se
2.	In zer		-	ate is independent	of:				
	(a)	Temperature of			(b)	Concentration	of reacta	ants	
	(c)	Concentration			(d)	None of these			
3.				$+ NO \longrightarrow NO_2 + O_2i$					
	(a)	One	(b)	Two	(c)	Three	(d)	Zero	
4.		•		p <mark>entaoxide has ord</mark> e					
	(a)	Zero	/ (b)	First	(c)	Second	(d)	Third	
5.				he rate of reaction		\ \			_
_	(a)	Inhibitor	(b)	Activator	(c)	Oxidant	(d)	Auto-Ca	ıtalyst
6.				ergy required for a				<i>(</i> 1)	
_	(a)	Activation ene	• ,	(b) Internal ene	-, , ,	Translational e	energy	(d)	None
7.		-		action HCOOH —→I			<i>(</i> 1)	_	
_	(a)	Copper	(b)	Alumina	(c)	Silica	(d)	Iron	
8.		_		glucose and fructo				N.1	
•	(a)	Urease	(b)	Invertase	(c)	Zymase	(d)	None	
9.			oceeas II	n sequence of steps			erminea	by:	
	(a)	Faster step	f all stone	0	(b)	Slowest step	ont oton		
10	(c)	Molecularity o		- AB -	(d)	Order of differ	ent step	7 T	ID 40 44)
10.				ne catalyst more eft Retarder			(4)		IR 10, 11)
	(a)	Inhibitor	(b)		(c)	Promoter	(d)	Auto Ca	•
11.		ctive element		t of radioactive ele	ment disir	itegrates in ot	minuu	es the na	
	(a)	20 minutes	(b)	30 minutes	(c)	40 minutes	(d)	25 minu	(LHR 10)
12.				erature, the rate of					
12.		on is due to:	C tempe	erature, the rate or	i Caction L	ecomes doub	ic. IIII5	IIICI Case	iii iate oi
	(a)		ne activati	ion energy of reaction					
	(b)			collision between the	molecules	_ 0			
	(c)	THE THE PERSON NAMED IN COLUMN 1	AND THE REST	nergy of reactants	(d)	Increase in nu	mber of	effective	collision
13.				r zero order reaction		70114			
	(a)	dm ³ S ⁻¹	(b)	mole dm ⁻³ s ⁻¹	(c)	dm³ mol-1s-1	(d)	mole S	1
14.		-		tion 2 A + B \rightarrow Prod			(-)		
				esent in large exce		rder of reaction	n is:		
	(a)	1	(þ)	201/04	, (c)	³ 14	(d)	None of	these
15 .		If life period	of To Cis	5 5760 years. 100m	g of samp	le of TC will		to 25mg	ı in:
		•	6	-,		6		_	
	(a)	11520 years	(b)	2880 years	(c)	57600 years	(d)	5760 ye	ars
16.		ergy of activa			. ,	•	` ,	•	
	(a)			nts and products	(b)	Less than the	reactants	s and prod	ducts
	(c)	Equal to the p		•	(d)	Equal to the re		•	
17 .	Ìndica	te the enzym	e which	catalyses the follow		•			
		$0_6 \longrightarrow 2C_2 H_5 O$			-				
	(a)	Diastase	(h)	7vmase	(c)	Urease	(d)	Inverta	se

(ECAT, NUST-NET, NTS-NAT, COMSATS, FAST, PIEAS, GIKI, UHS, Army Medical, PIMS)

www.passpk.com

ANSWER KEY

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
b	b	b	b	а	a	a	b	b	С	b	d	b	а	a
16	17	18	19	20	21	22	23	24	25	26	27	28		
а	b	C	△ c	C	b	С	d	a	a	b	d	С		

system

Prepared By:

PASS Education System (Team) Revised By: Taimoor Hassan

